
—Supplementary Material—
DiST-4D: Disentangled Spatiotemporal Diffusion with Metric Depth

for 4D Driving Scene Generation

1. Metric Depth Curation

The proposed metric depth curation pipeline relies on LiDAR
point clouds and visual reconstruction results to generate
fine-grained depth maps. Due to the high sparsity of LiDAR
point clouds in the nuScenes [2] dataset, we aggregate multi-
frame LiDAR data using a window of three frames. For the
MVS reconstruction network, we set the maximum depth to
100 meters, and the final aggregated point cloud undergoes
voxel downsampling with a resolution of 0.1 meters to reduce
redundancy.

Since MVS static point clouds contain significant noise,
we filter out ground-level noise by retaining only points lo-
cated above the ego vehicle’s LiDAR. When merging LiDAR
and MVS points, we prioritize LiDAR data and utilize MVS
points only in regions where LiDAR coverage is unavailable.
We apply nearest-neighbor interpolation to obtain an initial
dense metric depth prompt. Finally, we utilize a generative
depth completion network to obtain a dense and accurate
metric depth map, while a semantic segmentation network
is applied to identify the sky region and assign it a depth of
100 meters, ensuring consistency in depth representation.

The effectiveness of the proposed metric depth curation
pipeline is illustrated in Fig.1. When relying solely on Li-
DAR points, depth estimation errors for distant objects tend
to be significant. Incorporating the static scene point cloud
reconstructed via MVS substantially alleviates this issue.
Moreover, since both LiDAR and MVS-reconstructed point
clouds maintain cross-camera consistency, our depth comple-
tion pipeline not only enhances fine-grained details within
individual frames but also ensures high temporal and multi-
view consistency across the entire scene.

We further evaluate our pseudo metric depth ground truth
on the nuScenes validation set [2], using multi-frame LiDAR
depth as the reference. As shown in Tab.1, our pseudo depth
GT achieves higher accuracy compared to the estimated
depth results from[11, 16].

More results about our metric depth are in Fig.14

Method Abs. Rel. ↓ RMSE ↓ δ < 1.25 ↑ δ < 1.252 ↑
Multiple Frame LiDAR GT

SD [11] 0.27 / 0.28 6.50 / 6.59 0.67 / 0.63 0.87 / 0.85
M2Depth [16] 0.25 / 0.26 6.02 / 6.16 0.72 / 0.72 0.89 / 0.88
DiST-T (Ours-D) 0.20 / 0.25 5.33 / 5.58 0.79 / 0.75 0.92 / 0.91
DiST-T (Ours) 0.24 / 0.35 6.24 / 6.89 0.71 / 0.61 0.88 / 0.83
Pseudo GT 0.13 / 0.20 3.46 / 3.31 0.84 / 0.76 0.95 / 0.93

Table 1. Quantitative evaluation of pseudo depth GT and generated
depth on nuScense dataset [2].

2. DiST-T
Model Setup. We use the pre-trained 3D VAE from
CogVideoX [14] and train the diffusion model from scratch.
First, we train DiST-T for RGB video generation with a reso-
lution of 224× 400 for 7 days. Then we train the DiST-T for
RGB-D video generation with the resolution of 224× 400
for 3 days, followed by training at 424× 800 for 3 days. All
training phases are conducted on 8× NVIDIA H20 GPUs.
The backbone of STDIT has the same layer N = 28 and
hidden size d = 1152 following the previous work.

Loss Function We use simulation-free rectified flow [7]
and v-prediction loss [5]:

zt = (1− t)x0 + tϵ (1)

L = Eϵ∼N (0,I)∥Gθ(zt, t)− (ϵ− x0)∥22, (2)

where t ∼ lognorm(0, 1) is timestep and Gθ indicates DiST-
T network with parameters θ.

More experiment results We chose 17 frames for a fair
evaluation with prior works [6], and our model can support
65 frames when trained on a single H20 GPU, as shown
in Fig. 2. In order to further demonstrate the capability of
DiST-T in OOD cases, We conduct zero-shot experiments
on the Waymo dataset, as shown in Fig. 3.

Besides, DiST-T can support generation with fewer con-
trol signals. During training we use random dropout on
various conditions, enabling the model to infer using only
the BEV map, as shown in Fig. 4. More visualization results
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Figure 1. The comparison of the dense metric depth completion performance on a) only multi-frame LiDAR point cloud, b) add static scene
point cloud with MVS, c) add sky semantic mask

about RGB-D video generation of DiST-T are provided in
Fig. 8 ∼ Fig. 11.
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Figure 2. Generating more frames with DiST-T
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Figure 3. Zero-shot performance on Waymo
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Figure 4. Inference with only BEV map condition

3. DiST-S
Model Setup. The resolution of generated results is set to
448× 768 with the video length T = 6. Initializing DiST-S
from SVD [1], we train DiST-S for 1 day with 8× NIVIDA
H20 GPUs. SCC strategy is employed to full trainset for
generating novel trajectories. DiST-S with the SCC strategy
will require an additional day of training.

More experiment results We qualitatively compare DiST-
S with another Point2Video diffusion model, as illustrated
in Fig.6. For FreeVS∗ [9], we retrain the model on the
nuScenes[2] dataset using the official code and aggregated
LiDAR point clouds from more frames (n = 10). However,
this method relies on accurate and dense LiDAR point clouds.
Even after multi-frame aggregation, the density of LiDAR
point clouds in nuScenes still falls short of that in the Waymo
Open Dataset [8]. Besides, LiDAR-based methods struggle
to handle distant buildings. From the visual comparisons, it
can be observed that FreeVS* exhibits significantly poorer



performance in distant objects and the sky.
For ViewCrafter∗[15], DUSt3R[10] is used for relative

depth estimation in the official model, making control-
specific locations unfeasible. Therefore, we utilized our
processed pseudo-image as the conditional input and the
image in the recorded trajectory as a reference image. How-
ever, as this method is specifically designed for static scenes,
its effectiveness in driving scenarios is limited, and it lacks
the capability to accurately synthesize novel views based on
given conditions.

Fix Viewpoint, f=0 Fix Viewpoint, f=5

Fix Viewpoint, f=0 Fix Viewpoint, f=5

Figure 5. Fixing viewpoint whilt varying timestamp.

In addition to horizontal shifts, DiST-S is capable of sim-
ulating various translations and rotations, as shown in Fig. 7.
The model can support various other tasks, such as fixing
viewpoint while varying timestamp (Fig. 5 ).

Our model maintains robust inter-frame consistency in
dynamic cars and background, though degradation may oc-
cur with distant objects, dynamic pedestrians, and areas with
ambiguous conditions, especially in distant views. More
visualization results about spatial novel view synthesis of
DiST-S are provided in Fig. 12 and Fig. 13.

Implementation Details of Reconstruction Methods To
evaluate the effectiveness of our method in novel view syn-
thesis (NVS), we compare it against NeRF-based (EmerN-
eRF [13]) and 3DGS-based (StreetGaussian [12], PVG [3],
OmniRe [4]) approaches on 30 scenes from the nuScenes
validation dataset. The results are presented in Table 5 and
Figure 7 in the main text.

For these reconstruction methods, we use all frames in
each scene for training. Specifically, EmerNeRF: We use
the official implementation. Since EmerNeRF is configured
to train with 100 frames by default on the nuScenes dataset,
we split each scene into two subsets, each containing approx-
imately 100 frames. StreetGaussian, PVG, and OmniRe:
We utilize the official code and training configuration pro-
vided by OmniRe.

The 30 selected scenes for validation (nuScenes-devkit
[2] order) are: 11-scene, 12-scene, 13-scene, 14-scene, 36-
scene, 75-scene, 79-scene, 83-scene, 84-scene, 87-scene, 88-

scene, 90-scene, 91-scene, 92-scene, 214-scene, 257-scene,
259-scene, 261-scene, 262-scene, 410-scene, 412-scene, 414-
scene, 436-scene, 439-scene, 442-scene, 443-scene, 444-
scene, 445-scene, 446-scene, 447-scene.

4. Notations
The notations used in paper are listed in Tab. 2.
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Figure 7. More results of translations and rotations in NVS.

Notation Description
E VAE encoder
D VAE decoder
T number of frames
C number of cameras
Iref,c reference image of c-th camera
Iref reference images of the all cameras
ZI , ZD image, depth latent feature
ZI

cond, ZD
cond latent feature of image, depth condition

N number of blocks in the DiST-T
Pt, camera pose at t-th frame
Bt 3D bounding boxes at t-th frame including class information and corner points of boxes
At ego trajectory information at t-th frame
Mt map information
Aori the original trajectory
Anovel the novel trajectory
Vt, Vt+n viewpoint of the t-th ,and t+ n-th frame in the original trajectory Aori
Vt′ viewpoint of the t-th frame in the novel trajectory Anovel
T t→t+n transform matrix from the t-th frame to the t+ n-th frame in Aori

T t→t
′

transform matrix from the t-th frame in Aori to the t-th frame in Anovel
τ laterally shift distance from Aori to Anovel
Ipt+n image condition projected at the t+ n-th frame
Dp

t+n depth condition projected at the t+ n-th frame, including depth and valid mask
Ct+n projected condition at the t+ n-th frame concatenated from image, depth and valid mask

Table 2. Table of notations and descriptions



Figure 8. Additional visualizations of video generation using DiST-T. Our model can produce high-quality RGB videos along with
corresponding metric depth sequences.



Figure 9. Additional visualizations of video generation using DiST-T. Our model can produce high-quality RGB videos along with
corresponding metric depth sequences.



Figure 10. Additional visualizations of video generation using DiST-T. Our model can produce high-quality RGB videos along with
corresponding metric depth sequences.



Figure 11. Additional visualizations of video generation using DiST-T. Our model can produce high-quality RGB videos along with
corresponding metric depth sequences.
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Figure 12. Additional visualizations of spatial novel view synthesis using DiST-S. We present NVS results of DiST-S from various shifted
viewpoints, demonstrating our method’s ability to generate photorealistic images with high consistency to the original scene.



Left  2m Left  1m GT Right  1m Right  2m

Figure 13. Additional visualizations of spatial novel view synthesis using DiST-S. We present NVS results of DiST-S from various shifted
viewpoints, demonstrating our method’s ability to generate photorealistic images with high consistency to the original scene.
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Figure 14. The visualization results of the corresponding LiDAR points and MVS points for the processed metric depth pseudo ground truth.
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