FastVAR: Linear Visual Autoregressive Modeling via Cached Token Pruning

Supplementary Material

A. Results on ImageNet with VAR

In the main paper, we focus on the performance of our Fast-
VAR on high-resolution image generation tasks. As stated
in Section 3.2, applying token pruning on early small scale
steps can lead to performance degradation due to the in-
terference of the structure construction. Given that prun-
ing on small token maps can not bring significant speedups,
we thus do not design over-complex algorithms to further
accelerate small-scale steps. However, for the sake of ex-
perimental completeness, we give the results of our Fast-
VAR on the 256x256 class conditional generation on Im-
ageNet in Tab. A.1. It can be seen that our FastVAR
can achieve very competitive performance against existing
methods, while maintaining a high speedup ratio. Since the
VAE in the existing VAR methods adopts a high compres-
sion rate, e.g., 16 x downsample, the token map resolution
at the largest scale in the VAR model [51] is only 16x 16 for
the 256 X256 image generation. As a result, token pruning
on this small-scale generation is much less robust compared
to the larger resolution, e.g., 1024x 1024 resolution. We
leave it for future work to design more generalized strate-
gies to further include token maps at small scales.

B. Further Efficiency Profiling

As demonstrated in the experiments, our FastVAR can
achieve significant speedup without performance degrada-
tion, e.g., 1.5x speedup for the HART backbone. How-
ever, this speedup ratio still shares some similar latencies as
the unpruned benchmark, such as the forward pass at small
scale steps. Here, we give a more fine-grained speedup
comparison by directly comparing the attention and FFN
under the condition of with and without the proposed Fast-
VAR. As illustrated in Fig. A.1, FastVAR (ratio=75%) can
bring even a 4.6x speedup for the attention and a 3.8x
speedup for the FEN. This result demonstrates a promising
speedup upper bound of our FastVAR.

Furthermore, compared to the runtime of the standard
benchmark, our FastVAR adds additional token importance
calculation, as well as token number restoration, which may
introduce additional time. Here, we give experimental re-
sults to validate the efficiency of our FastVAR. As shown
in Fig. A.1, the additional computational cost accompany-
ing our FastVAR is almost negligible. For example, the pro-
posed PTS occupies only 0.59 ms, while the CTR occupies
0.24 ms. Thus the total additional latency from our Fast-
VAR, i.e., 0.63 ms, occupies only 5% of the original atten-
tion module, which is significantly lower than the speedup
brought from FastVAR.

Table A.1. Quantitative comparison on 256x256 generation on
ImageNet.

Methods #param runtime memory IST FIDJ Precisiont Recallf

VAR(d=24) [51] 1.0B 12s 14GB 313.7229 8250 5745
VAR(d=30) [51] 2.0B 22s 22GB 306.6 2.05 81.76 58.20
CoDe(N=8)[10] 23B 1.7s 15GB 3004 2.26 8131 58.63
CoDe(N=9) [10] 2.3B 22s 16GB 2972216 81.07 59.03
FastVAR(d=24) 1.0B 1I.Is 13GB 2874264 7976 58.22
FastVAR(d=30) 2.0B 19s 15GB 288.7230 80.72 58.64

10.97ms

3.8x

1.34ms

0.59ms
0.24ms
I
Attn Attn+FastVAR FFN FFN+FastVAR PTS CTR

Figure A.1. Efficiency Profiling of different modules in one Trans-
former layer. Note that the runtime of the Attn and FFN baseline
is evaluated using FlashAttention.

Table A.2. More evaluation results on HPSv2.1 [58] and ImageRe-
ward [62] benchmarks.

benchmark HART ToMe Ours | Infinity ToMe Ours

Latency. 950ms 800ms 630ms | 2600ms 1130ms 950ms
Speedup? 1.0x 1.2x 1.5x% 1.0x 23x 27x

HPSv2.11 2875 27.04 27.85 | 3036 29.85 30.03
ImageRewardt | 0.5658 0.4988 0.5370| 0.9245 0.8992 0.9129

C. Comparison on More Benchmarks

In the main paper, we compare our FastVAR with dif-
ferent methods on the Geneval [20] and MJHQ30K [29]
datasets. In order to provide a systematic evaluation, we
further compare different methods on more benchmarks in-
cluding HPSv2.1 [58], and ImageReward [62]. The exper-
imental results are given in Tab. A.2. It can be seen that
our FastVAR maintains consistently favorable performance
than other competitive token pruning baseline, while allow-
ing for significant speedup than the original backbones. For
instance, FastVAR achieves 0.81 higher HPSv2.1 score than
ToMe [3] while being more efficient. The above results on
more evaluation benchmarks further demonstrate the effec-
tiveness of our FastVAR.

Table A.3. Ablation experiments of applying extreme pruning ra-
tios to other VAR backbone HART [49]. We set N = 2 in all
setups, i.e., only the last two scale steps are pruned with FastVAR.

ratios Speedup? Latency] Throughputt FID] CLIPT GenEvalf

30.61 2847 0.51
28.19 28.34 0.51
48.54 28.46 048

no_pruning 1.0x 0.95s 1.05
{50%,75%} 1.5x 0.63s 1.59
{50%,100%} 1.9x 0.51s 1.96

D. Ablation on Caching Step

In the proposed Cached Token Restoration (CTR), we use
the token map from the last scale step of the Structure Con-
struction Stage S, i.e., the (N — K)-th step, as the cache,
which will be used to restore the original token numbers
during token pruning. Here, we conduct ablation exper-
iments to justify the rationality by setting different scale
steps as the caching step. The results are shown in Tab. A 4.
It can be seen that setting the last element in S as the
caching step achieves consistently the best results on all
evaluation metrics. Notably, this setup has almost no per-
formance degradation compared to the unpruned baseline
models. In addition, we observe a steady performance drop
when the caching step gradually moves small. This is be-
cause we use the cached token map to approximate the
pruned tokens, so the gap between the last element in S
and the steps in 7 is the smallest. Therefore, using the step
that is closer to the pruned scale steps as the caching step
can achieve better performance.

E. Discussion on Extreme Pruning Ratios

In the main paper, we mentioned that different backbones
exhibit different levels of tolerance for the pruning ratio.
For example, we used an even 100% ratio for the last two
scale steps of the Infinite model [22]. However, we point
out that this extreme pruning ratio does not apply to HART
model [49]. Specifically, we apply the N = 2 and {50%,
100%} FastVAR to the HART model. The experimental re-
sults are shown in Tab. A.3. It can be seen that the extreme
pruning ratio produces serious performance degradation for
HART. We argue that this is due to the difference in the pre-
trained model size. Specifically, the size of Infinite 2B is
significantly larger than the 700M of HART. The stronger
capabilities of the larger model allow for modeling more
challenging textures in the earlier scale steps. As a con-
trast, the smaller model relies on test-time scaling [47] to
use longer scale steps to produce complex details, and thus
suffers from severe degradation when extreme pruning is
applied on the last few steps.

F. Limitation and Future Work

Our FastVAR can effectively alleviate the quadratically in-
creasing complexity with scales, benefiting from the pro-

Table A.4. Ablation experiments of different caching scale steps.

GenEval MJHQ30K

cached steps
two_object positionT color_attr? Overallf FID] CLIPt
no_pruning 0.62 0.13 0.18 051 30.61 28.47
KN-3 053 011 015 047 4061 2736
K-N-2 0.60 0.13 0.19 050 3239 27.94
K-N-1 0.57 0.13 0.20 049 29.83 28.25
KN 057 016 024 051 2819 2834

posed cached token pruning. Nonetheless, our work can
be further improved in the future in the following aspects.
First, the proposed FastVAR focuses mainly on the acceler-
ation of the large-scale step which occupies the main in-
ference time. Therefore, our method can be further im-
proved in accelerating small-resolution image generation
tasks by designing more generalized pruning strategies to
include pruning small-scale token maps as well. Second,
we have revealed the scale-wise sensitivity of pre-trained
VAR models, i.e., large-scale steps are more robust to small-
scale steps for pruning, which inspires us to adopt a pro-
gressive pruning ratio schedule. Therefore, utilizing more
fine-grained pruning prior, e.g., layer-wise or even develop-
ing adaptive pruning ratios, is promising to achieve higher
speedup ratios. Third, we show that the current FastVAR
can be combined with Flash Attention to achieve combined
speedup. As other potential work on accelerating VAR
models emerges, such as network quantization or fewer de-
coding steps, our FastVAR could potentially integrate with
these approaches to achieve further acceleration.

G. Algorithm of FastVAR

In Algo. 1, we give the Pytorch-like pseudocode of the pro-
posed FastVAR. Thanks to the simplicity and generality, our
proposed FastVAR can be seamlessly integrated into vari-
ous VAR models using a few code lines.

H. More Visual Results

In this section, we provide more visual results, which are

organized as follows:

* In Fig. A.2, we give more visualization results about the
intermediate outputs of the pre-trained VAR model at dif-
ferent scale steps.

* In Fig. A.3, we give more qualitative results of Infi-
nite [22] on the MJHQ30K dataset.

» Fig. A.4 gives more qualitative results of the HART [49]
model on the MJHQ30K [29] dataset.

* In Fig. A.5, Fig. A.6, and Fig. A.7, we give more gen-
eration results on the zero-shot higher-resolution image
synthesis tasks.

Algorithm 1: The pseudo-code of FastVAR algorithm, Pytorch-like

def pivotal_token_selection(x, topk):
calculate the direct-through component
pool_x = rearrange(x, 'b (h w) ¢ > b c h w’)
pool_x = adaptive_avg_pool2d(x, (1, 1))
pool_x = rearrange(poolx, "b c 1 1 -> Db 1 c’)
score = sum((x — pool_x)*x*x2, dim=-1)
select the topK high frequency tokens
pivotal_idx = argsort (score, dim=1, descending=True) [:, :topk, :]
return gather (x, dim=1, index=pivotal_idx)
def cached_token_restoration(x, cache):
up-sample cache features to the size of x
restored.x = interpolate (cache)
restored.x = rearrange (restoredx, 'b c hw -> b hw c’)
fuse the cached and the current tokens
restored.x.scatter_(dim=1, index=pivotal_idx, src=x)
return restored._x

16x16 32x32 64x64 96x96 128x128 192x192 256x256 320x320 384x384 512x512 640x640 768x768 1024x1024

Figure A.2. More visualization results of the intermediate outputs at different scale steps of pre-trained VAR model [22].

Ayuy

up

(dnpoadg x/°7)
AVAISe] +

uiyu]

(dnpaadg x/°7)
AV AISES +

Auiyuy

(dnpaadg x/°7)
AVAISES +

Auyug

(dnpoadg x/°7)
YVAISe] +

Figure A.3. More qualitative comparison with the Infinite model on the MJHQ30K dataset.

(dnpoads x¢'1)
AVAISed +

(dnpoadg X6°T)
AVAISe] +

(dnpoadg X6'T)
AVAISed +

(dnpaadg x6°1)
AVAISed +

Figure A.4. More qualitative comparison with the HART backbone on the MJHQ30K dataset.

960x1920

1344%1344

134452008 1344{3 ﬁ" a 1344 . "1820x960

Figure A.5. Moreover generation results of the high-resolution image synthesis with Infinite+FastVAR. The images are scaled for better
presentation.

Figure A.6. Moreover generation results of the high-resolution image synthesis with Infinite+FastVAR.

Figure A.7. Moreover generation results of the high-resolution image synthesis with Infinite+FastVAR.

	Introduction
	Related Work
	Method
	Preliminary
	Motivation
	Efficient Resolution Scaling for VARs

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Discussion

	Conclusion
	Results on ImageNet with VAR
	Further Efficiency Profiling
	Comparison on More Benchmarks
	Ablation on Caching Step
	Discussion on Extreme Pruning Ratios
	Limitation and Future Work
	Algorithm of FastVAR
	More Visual Results

