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Figure A1. Illustration of Homogeneous FCIT and Heterogeneous
FCIT settings.

A. More Details of FCIT Benchmatk

A.1. Illustration display of FCIT

To better understand the proposed Homogeneous FCIT and
Heterogeneous FCIT settings, we further provide an illus-
tration detailing their entire process.

As shown in Figure A1, we use different colors to dis-
tinguish datasets and assume the continual learning stage
lasts for T steps. In Homogeneous FCIT setting, the own
data of the selected local clients in each stage belong to the
same dataset, which exists in different proportions in differ-
ent clients. Each stage comprises multiple communication
rounds (set to 10 in our experiments), during which clients
train the model on their own data (with 1 epoch per round),
upload weights to the global server for aggregation, and re-
ceive the aggregated weights for the next round. Homoge-
neous FCIT setting extends continual instruction tuning to a
federated learning setting with a non-IID data distribution,
posing greater challenges for traditional methods.

Heterogeneous FCIT setting extends the former by al-
lowing each client’s data to come from different datasets
in each stage. This requires the global server to mitigate
catastrophic forgetting across stages while resolving con-
flicts among datasets within the same stage. This setting
is common in real-world scenarios, such as healthcare sys-
tems that need to simultaneously manage multiple disease
outbreaks while continuously updating to track their pro-
gression and mitigate social risks, and our benchmark effec-
tively addresses this real-world need, providing a compre-
hensive evaluation framework for such dynamic challenges.

A.2. Visualization of data heterogeneous

In federated learning tasks, data heterogeneity poses a core
challenge in distributed training, primarily manifesting as
varying proportions of private data across different clients.
Therefore, we employ the Dirichlet distribution, a common
approach in FL tasks, to model distributional differences
among clients. In this paper, we use β to control the de-
gree of distributional variation, as visualized in Figure A2.

Figure A2. Visualization of Dirichlet distribution.

It can be seen that a smaller β leads to greater disparities
in data distribution among clients, resulting in more extreme
heterogeneity, whereas a larger value of β indicates a more
uniform distribution.

A.3. Visualization of the dataset

Table A1 and Table A2 present the input images and instruc-
tion formats of the 12 selected datasets, which exhibit rela-
tively low average zero-shot performance on the base model
LLaVA-v1.5-7B, approximately 30% lower than their fine-
tuning performance (See Zero-shot and Centralized MTL
in Table 4). This better ensures that these datasets remain
unseen or unfamiliar to the base model during training,
thereby reducing information leakage.

In our experiments, we design two dataset-level settings:
Capability-related and Task-related. The capability-related
setting categorizes the 12 datasets into four dimensions:
general, math, chart, and other, where each capability con-
sists of a mix of relevant datasets. The task-related setting
selects 8 out of the 12 datasets for different stages of contin-
ual learning, evaluating how well different approaches mit-
igate forgetting over a long-stage learning setup. The spe-
cific data composition of these two settings can be found in
Section 3.2.



Dataset Visual input Question Response

A-OKVQA
What is the man by the bags awaiting?

0. skateboarder 1. train 2. delivery 3. cab
Answer with the option’s letter from the given choices directly.

3

IconQA
What has been done to this letter?

0. turn 1. slide 2. flip
Answer with the option’s letter from the given choices directly.

2

Grounding
Please provide the bounding box coordinate

of the region this sentence describes:
kid on right teddy bear bib.

[0.65,0.44,0.88,0.98]

ImageNet-R
Question: What is the object in the image?

Answer the question using a single word or phrase. Killer whale

ArxivQA

How many coarse classes are represented in the figure?
A) Less than 50 B) Exactly 77

C) More than 100 D) Exactly 99
Answer with the option’s letter from the given choices directly.

B

FigureQA
Please answer the question and provide the correct option letter at the end.

Question: Is Light Slate greater than Dark Green?
Choices: (A) no (B) yes

B

DVQA
Please answer the question and provide the final answer at the end.

Question: What is the value of the largest individual bar in the whole chart? 9

CLEVR-Math
Subtract all brown matte objects.

Subtract all blue cylinders. How many objects are left?
Answer the question using a single word or phrase.

7

super-CLEVR
Question: There is a matte thing that is in front of the small

purple utility bike and behind the red metal thing; how big is it?
Answer the question using a single word or phrase.

small

Table A1. Visualization of input images and instruction formats for each dataset in FCIT.



Dataset Visual input Question Response

TabMWP

Question: The members of the local garden club
tallied the number of plants in each person’s garden.

How many gardens have at least 47 plants?
Answer the question using a single word or phrase.

13

Flickr30k
What is happening in the image?

Generate a brief caption for the image.
Three older women are at a restaurant

talking with other people

OCR-VQA
Who wrote this book?

Answer the question using a single word or phrase. Tony Wheeler

Table A2. Visualization of input images and instruction formats for each dataset in FCIT.

B. More Details of Experiments

B.1. Details of the comparison method

In this section, we present the underlying principles of the
baseline methods used in our experiments.

LwF mitigates forgetting by applying knowledge dis-
tillation loss during new task learning. It preserves past
knowledge by extracting soft labels from the frozen old
model’s outputs and constraining the new model’s outputs
to remain close, minimizing deviation from previous tasks.

EWC mitigates forgetting by restricting updates to im-
portant parameters of previous tasks. It computes parameter
importance using the Fisher information matrix and penal-
izes significant changes, preserving past knowledge while
learning new tasks.

L2P introduces a dynamic prompts pool, enabling the
model to select and optimize relevant prompts based on
similarity during training. Additionally, it applies a regu-
larization loss to encourage task-specific prompt selection,
mitigating catastrophic forgetting.

O-LoRA imposes an orthogonality constraint in param-
eter space, ensuring that the optimization of the current task
occurs in a direction orthogonal to previous tasks, thereby
minimizing task conflicts. During inference, it aggregates
learned knowledge by concatenating the LoRA modules of
all tasks along the specified dimension.

M-LoRA trains LoRA modules separately at each stage
and mitigates forgetting by spatially merging them in pa-
rameter space during inference. Unlike O-LoRA, it does
not incur additional memory overhead during training.

MoELoRA transforms the fine-tuning of individual
LoRA into a Mixture-of-Experts framework, where a prede-
fined set of LoRA modules serves as expert heads. During
training, routers are optimized alongside expert selection,
aiming to assign different tasks to distinct expert heads.
This structured allocation helps mitigate forgetting by en-
suring the router effectively distributes outputs across ex-
pert modules.

B.2. Details of evaluation

In our benchmark, tasks have different output formats,
requiring tailored accuracy evaluation methods. For
tasks with answering a single option or single word,
we determine correctness using pred.upper() in
Response.upper(). For captioning tasks, we adopt
standard image captioning metrics, including Bleu 1,
Bleu 2, Bleu 3, Bleu 4, METEOR, ROUGE L, and
CIDEr. The final results are computed as the average of
these seven metrics.



Figure B1. Ablation study of hyper-parameters in Hom-FCIT and
task-related setting. The partition β is set to 1.0.

B.3. Ablation study of hyper-parameters
In this section, we conduct more ablation experiments on
two key hyperparameters, the threshold τ and the temper-
ature coefficient ε, with results shown in Figure B1. It
can be seen that both excessively large and small temper-
ature coefficients significantly affect the results. A larger
coefficient leads to overly sharp activation assignments, in-
creasing the likelihood of selecting mismatched subspaces,
while a smaller coefficient incorporates excessive informa-
tion from irrelevant subspaces, ultimately degrading model
performance. Similarly, an excessively large threshold may
filter out knowledge relevant to the same task, while a too-
small threshold may misassign identity tokens to other sub-
spaces, both leading to degraded performance.

Threshold τ ≤ 0.5 0.6 0.7 0.75 0.8 0.9 0.95

Num. of Subspace 1 3 6 7 8 8 10

Table B3. The effect of threshold selection on the number of sub-
spaces in Hom-FCIT setting (task-related, β = 1.0).

We further investigate the effect of threshold selection on
the number of subspaces formed. As shown in Table B3, a
threshold that is too low fails to effectively separate task-
specific knowledge, leading to subspace aggregation across
tasks and potential knowledge conflicts. Conversely, an
overly high threshold may split knowledge that belongs to
the same subspace, resulting in redundant branches and de-
graded model performance.

B.4. Comparison on a single dataset
We further compare single-task performance between our
proposed DISCO and Finetune. As shown in Figure B2
(Left), for the first learned task, our method significantly
mitigates forgetting. Under Het-FCIT (Figure B2 Right),
for task-specific OCR-VQA, DISCO not only enhances
knowledge retention during learning but also maintains
strong performance even when the task is absent. In
contrast, Finetune suffers from severe inter-task conflicts,

Figure B2. Left. Performance curve of first learned task
ImageNet-R under Hom-FCIT and task-related settings; Right.
Performance curve of OCR-VQA under Het-FCIT and task-
related settings. The black dashed line indicates the stage where
the model has learned OCR-VQA.

leading to continuous performance degradation even while
learning the dataset (2-nd and 3-rd black dashed lines).

B.5. Evaluation of zero-shot capability and general
benchmark performance

In addition to mitigating forgetting, we also evaluate the
generalization ability of different methods on unseen tasks,
as well as their performance on a general LMM bench-
mark. As shown in Table B4, our method improves zero-
shot transfer performance on tasks without downstream su-
pervision. Moreover, it minimizes negative transfer effects
on the general LMM benchmark, demonstrating strong ro-
bustness and adaptability.

Hom-FCIT
β = 1.0

Zero-shot capability General LMM benchmark

Task2 Task3 Task4 Avg MME POPE MMBench SEED

LLaVA-1.5 46.97 17.05 27.13 30.38 1476.9 86.4 66.1 60.1
O-LoRA 41.89 16.04 26.88 28.27 1354.6 80.7 59.4 59.0
M-LoRA 45.33 15.90 31.26 30.83 1376.8 79.8 60.1 59.5

MoELoRA 43.16 16.86 29.09 29.70 1358.3 82.8 60.5 59.2
DISCO 46.14 17.00 36.09 33.08 1436.6 83.9 62.4 60.1

Table B4. Zero-shot transfer and general LMM benchmark results
in the Hom-FCIT setting (capability-related, β = 1.0).

B.6. Efficiency and storage analysis.

Methods Efficiency LoRA memory cost

Speed (↑) FLOPs (↓) Hom-FCIT ∆ Het-FCIT ∆

Finetune 3.46 it/s 8.55 T 22.2 M 0.16% 22.2 M 0.16%
O-LoRA 3.42 it/s 9.35 T 88.7 M 0.63% 177.0 M 1.26%

MoELoRA 3.36 it/s 9.77 T 93.4 M 0.68% 186.0 M 1.33%
DISCO 3.45 it/s 9.35 T 88.9 M 0.63% 178.0 M 1.26%

Table B5. All efficiency comparisons are conducted under identi-
cal conditions. ∆: relative percentage to the backbone model.

As shown in Table B5, our method demonstrates the
most substantial performance gains compared to fine-tuning
and other baselines, while preserving competitive inference
efficiency and requiring only modest additional LoRA stor-
age overhead.

B.7. Detailed Results of DISCO.



DISCO General Other Chart Math

Task1 71.26
Task2 67.72 57.23
Task3 64.47 52.75 50.10
Task4 62.92 53.14 46.43 56.15

Table B6. Results matrix of DISCO in Hom-FCIT set-
ting (capability-related, β = 1.0)

DISCO General Other Chart Math

Task1 69.87 55.51
Task2 66.46 54.75 47.81 51.87
Task3 68.73 56.30 50.00 54.47
Task4 68.01 55.49 54.19 57.88

Table B7. Results matrix of DISCO in Het-FCIT setting
(capability-related, β = 1.0)

DISCO ImageNet-R ArxivQA IconQA CLEVR-Math OCRVQA Flickr30k FigureQA super-CLEVR

Task1 86.90
Task2 87.10 93.40
Task3 85.88 93.35 65.47
Task4 84.81 93.79 58.70 60.28
Task5 84.80 93.96 59.14 60.84 63.76
Task6 81.60 93.02 58.62 56.24 37.22 54.57
Task7 81.30 92.45 58.27 56.03 25.82 54.46 43.70
Task8 72.56 92.34 55.59 47.72 35.97 52.49 42.92 50.16

Table B8. Results matrix of DISCO in Hom-FCIT setting (task-related, β = 1.0)

DISCO ImageNet-R ArxivQA IconQA CLEVR-Math OCRVQA Flickr30k FigureQA super-CLEVR

Task1 87.99 58.37 64.76 53.39 41.52
Task2 88.35 54.87 53.68 64.35 53.52 42.08 47.04
Task3 76.46 88.1 61.35 57.22 64.24 55.98 41.85 46.88
Task4 84.45 89.28 61.27 55.33 64.04 55.94 40.75 50.00
Task5 83.90 90.45 63.83 58.23 64.07 53.97 39.92 50.18
Task6 85.46 90.71 64.14 62.53 63.73 53.68 40.23 50.14
Task7 84.75 90.65 68.36 60.28 63.17 42.90 40.38 51.08
Task8 73.95 91.75 68.33 59.55 62.52 55.18 43.55 51.16

Table B9. Results matrix of DISCO in Het-FCIT setting (task-related, β = 1.0)
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