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A. Experimental Setup Details
Datasets and Network Architecture. We conduct ex-

tensive experiments on the following four real-world

datasets: CIFAR10 [24], CIFAR100 [24], FMNIST [46],

EuroSAT [21]. For the CIFAR10, FMNIST, and EuroSAT

datasets, we employ the widely used ResNet18 as the de-

fault network architecture [20]. For CIFAR100, we opt for

the more powerful ResNet50 as the network architecture.

Baselines. We adopt eight FU methods as our baselines:

Retrain: We obtain the retrained model by training from

scratch with only the remaining data. Thus, the retrained

model is the optimal unlearning model.

Fine-tune: We fine-tune the original global model on the

remaining data with a few training epochs.

Gradient-ascent [45]: use reverse gradient ascent to fine-

tune the original model on the unlearning data.

FUDP [44]: prune the most relevant channels associated

with the unlearning data, followed by fine-tuning with the

remaining data.

FUMD [51]: utilize a randomly initialized degradation

model to erase the existence of the unlearning data.

VeriFi [10]: erase the contribution of the leaving data from

the global model by scaling up/down uploaded updates.

FedAU [14]: employ an auxiliary unlearning classifier com-

bined with linear operations to facilitate unlearning.

FedOSD [36]: design an unlearning cross-entropy loss to

overcome the convergence issue of the gradient ascent and

achieve an orthogonal steepest descent model direction for

unlearning.

Federated Learning Setting and Details. In our exper-

iments, we set the total number of clients at 20, with all

clients selected per round. The default Dirichlet coefficient

δ=0.5 for the Non-IID scenario. We use SGD [1] as the

optimizer during local unlearning training on each client,

running one local epoch per round. The batch and the rep-

resentation size are set to 256 and 512. The learning rate

is fixed at 0.01 for both the original model training and un-

learning (except for CIFAR100, where the original model

adopted a cosine-annealed learning rate starting at 0.1).

Metrics. We evaluate erasing guarantees using two key

metrics: (1) the accuracy of the unlearning model on the

unlearning data, and (2) the attack success rate (ASR) ob-

tained via membership inference attack (MIA) [39]. Lower

accuracy and ASR values on the unlearning data indicate

more effective erasure, with zero being the ideal value. We

assess model utility preservation by the metric: the unlearn-

ing model’s accuracy on the remaining data, where higher

accuracy represents better preservation of model utility. We

quantify unlearning efficiency by the metric: the process-

ing time from the original model into the final unlearning

model, with shorter times indicating greater efficiency.

B. Theoretical Analysis
We present a comprehensive theoretical analysis of the Fed-

erated Unlearning via Class-aware Representation Transfor-

mation (FUCRT) framework. Our analysis establishes for-

mal guarantees for the convergence and unlearning proper-

ties of the proposed method, demonstrating that representa-

tion transformation provides a principled approach to fed-

erated unlearning with quantifiable performance bounds.

B.1. Notation and Preliminaries
Let us establish the following notation:

• D = {(xi, yi)}Ni=1: The complete dataset with N samples

• C: The set of all classes

• CF ⊆ C: The set of classes to be forgotten

• S = {(xi, yi) ∈ D | yi ∈ CF}: The unlearning dataset

• R = D \ S: The remaining dataset

• θ0: The original model trained on D
• θ∗: The retrained model trained only on R
• θR: The FUCRT unlearned model

• fθ : X → R
d: The representation function mapping in-

puts to d-dimensional embeddings

• gθ : Rd → Δ|C|−1: The classification function mapping

representations to the probability simplex

• pθ(y|x) = [gθ ◦ fθ](x)y: The predicted probability of

class y given input x
• TF : S → C \ CF : The transformation function mapping

unlearning samples to target classes

B.2. Definition
Definition 1 (Representation-Based Unlearning) A
model θR achieves (ε, δ)-representation-based unlearning
if and only if the following conditions are satisfied:
1. Representation Convergence: For any unlearning sam-

ple xu ∈ S with transformation target TF (xu):

inf
xr∈R:yr=TF (xu)

‖fθR(xu)− fθR(xr)‖2 ≤ δ

2. Erasure Guarantee: The model no longer correctly
identifies unlearning data according to original labels:

sup
(x,y)∈S

pθR(y|x) ≤ ε



3. Utility Preservation: The predictions of θR on remain-
ing data approximate those of the original model θ0:

sup
x∈R

‖pθR(y|x)− pθ0(y|x)‖1 ≤ ε

B.3. Main Theoretical Results
Theorem 1 (Representation Convergence Guarantee)
Under the FUCRT training procedure with learning rate
schedule ηt =

η0√
t
:

1. For any δ > 0, there exists a number of training itera-
tions T such that the unlearned model θR achieves rep-
resentation convergence, satisfying:

inf
xr∈R:yr=TF (xu)

‖fθR(xu)−fθR(xr)‖2 ≤ δ, ∀xu ∈ S

2. The minimum expected representation distance over T
iterations satisfies:

min
t≤T

E[δ2t ] ≤
C√
T
,

where

C = K2 ·
(
2[L(θ(0))− L∗]

η0
+ η0Lσ

2

)

with K being a constant relating gradient magnitude to
representation distance, L(θ(0)) the initial loss, L∗ the
global minimum loss, η0 the initial learning rate, L the
loss smoothness constant, and σ2 the bound on stochas-
tic gradient variance.

Proof.
We first analyze the cross-class fusion loss component.

For any pair (xu, xr) where xu ∈ S and xr ∈ R with

yr = TF (xu), the fusion loss can be expressed as:

Lfusion = − log
exp(fθ(xu) · fθ(xr)/τ)∑

x′∈batch exp(fθ(xu) · fθ(x′)/τ)

where τ > 0 is the temperature parameter.

Computing the gradient with respect to the representa-

tion of xu:

∂Lfusion

∂fθ(xu)
= −1

τ

(
fθ(xr)−

∑
x′∈batch

p(x′|xu)fθ(x
′)

)

where

p(x′|xu) =
exp(fθ(xu) · fθ(x′)/τ)∑

x′′∈batch exp(fθ(xu) · fθ(x′′)/τ)

This gradient drives fθ(xu) toward fθ(xr) when they

form a transformation pair, facilitating representation con-

vergence.

Then, we adopt standard assumptions for non-convex

stochastic optimization:

1. Bounded gradients: ‖∇θL(θ)‖2 ≤ G for some constant

G > 0
2. L-smoothness: ‖∇θL(θ1)−∇θL(θ2)‖2 ≤ L‖θ1− θ2‖2
3. Bounded variance: E[‖∇θL(θ, ξ)−∇θL(θ)‖22] ≤ σ2

where ξ denotes a random mini-batch.

We begin with the classical convergence result from non-

convex stochastic gradient descent with the learning rate

schedule ηt =
η0√
t
:

min
t≤T

E[‖∇θL(θ(t))‖22] ≤
1√
T

(
2[L(θ(0))− L∗]

η0
+ η0Lσ

2

)
.

Define the squared representation distance at iteration t
as:

δ2t = inf
xr∈R:yr=TF (xu)

‖fθ(t)(xu)− fθ(t)(xr)‖22.

Due to the assumption relating representation distance

and gradient magnitude, we have:

δt ≤ K‖∇θL(θ(t))‖2,
which directly implies:

δ2t ≤ K2‖∇θL(θ(t))‖22.
Taking expectation, we obtain:

E[δ2t ] ≤ K2
E[‖∇θL(θ(t))‖22].

Therefore, considering the minimum over iterations up

to T gives:

min
t≤T

E[δ2t ] ≤ K2 min
t≤T

E[‖∇θL(θ(t))‖22].

Substituting the standard convergence bound for non-

convex SGD:

min
t≤T

E[δ2t ] ≤ K2 · 1√
T

(
2[L(θ(0))− L∗]

η0
+ η0Lσ

2

)
.

Define:

C = K2 ·
(
2[L(θ(0))− L∗]

η0
+ η0Lσ

2

)
,

which completes the proof, yielding:

min
t≤T

E[δ2t ] ≤
C√
T
.

This completes the proof.

Theorem 2 (Representation Convergence to Unlearning)
For a FUCRT model θR that achieves representation con-
vergence with parameter δ, there exists a function h(δ) such
that θR is an (h(δ), δ)-representation-based unlearning
model, where:

h(δ) = max(Lg · δ + γ(δ), κ(δ) · δ)
with:



• Lg: Lipschitz constant of the classification function gθR

• γ(δ): Transformation class identification error with
limδ→0 γ(δ) = 0

• κ(δ): Interference coefficient between unlearning
transformation and remaining data classification with
limδ→0 κ(δ) = 0

Furthermore, limδ→0 h(δ) = 0, ensuring that perfect rep-
resentation convergence implies perfect unlearning.

Proof.
We verify each condition of Definition 1:

1. Representation Convergence: This condition is satis-

fied by assumption with parameter δ.

2. Erasure Guarantee: For any (xu, yu) ∈ S where yu ∈
CF is the original label, let xr be a sample from R with

yr = TF (xu) such that ‖fθR(xu)− fθR(xr)‖2 ≤ δ.

Since gθR is Lg-Lipschitz continuous:

‖gθR(fθR(xu))− gθR(fθR(xr))‖1
≤ Lg · ‖fθR(xu)− fθR(xr)‖2
≤ Lg · δ

The probability assigned to the original class yu can be

bounded:

pθR(yu|xu) = [gθR(fθR(xu))]yu

Since the model is trained to classify xr as yr �= yu, and

xu is close to xr in representation space:

pθR(yu|xu) ≤ pθR(yu|xr) + Lg · δ

The transformation class identification process intro-

duces error γ(δ), which accounts for:

• Imperfect selection of transformation targets

• Residual information about original classes

Thus:

pθR(yu|xu) ≤ Lg · δ + γ(δ)

As δ → 0:

• Representation convergence becomes perfect

• Transformation targets become increasingly accurate

• Hence limδ→0 γ(δ) = 0
3. Utility Preservation: For any x ∈ R, the FUCRT

objective explicitly maintains original predictions through

Lfinetune on remaining data.

The representation transformation of unlearning data can

affect remaining data through:

• Shared parameters in the representation function

• Modified decision boundaries

Let κ(δ) quantify this interference normalized by δ:

‖pθR(y|x)− pθ0(y|x)‖1 ≤ κ(δ) · δ

As δ → 0:

Table 3. Accuracy (%) for the hyperparameters λ1 and λ2 of FU-

CRT on CIFAR10 dataset under both IID and Non-IID settings.

Hyperparameter IID Non-IID

λ1 λ2 U-set R-set U-set R-set

0.01 0.01 0.00 89.97 0.00 89.73

0.05 0.05 0.00 90.05 0.00 89.76

0.1 0.1 0.00 90.09 0.00 89.79

0.3 0.3 0.00 90.06 0.00 89.82

0.5 0.5 0.00 90.04 0.00 89.67

1 1 0.00 90.02 0.00 89.62

10 10 0.00 89.68 0.00 88.40

0.3 0.01 0.00 90.01 0.00 89.75

0.3 0.05 0.00 90.07 0.00 89.74

0.3 0.1 0.00 90.10 0.00 89.79

0.3 0.3 0.00 90.06 0.00 89.82

0.3 0.5 0.00 90.05 0.00 89.75

0.3 1 0.00 90.03 0.00 89.70

0.3 10 0.00 89.75 0.00 89.10

0.01 0.3 0.00 89.98 0.00 89.71

0.05 0.3 0.00 90.06 0.00 89.71

0.1 0.3 0.00 90.09 0.00 89.74

0.3 0.3 0.00 90.06 0.00 89.82

0.5 0.3 0.00 90.04 0.00 89.72

1 0.3 0.00 90.02 0.00 89.65

10 0.3 0.00 89.83 0.00 89.31

• Impact on remaining data diminishes

• Hence limδ→0 κ(δ) = 0
Combining the bounds: Taking h(δ) = max(Lg · δ +

γ(δ), κ(δ) · δ), we have:

• Erasure guarantee: sup(x,y)∈S pθR(y|x) ≤ h(δ)
• Utility preservation: supx∈R ‖pθR(y|x) − pθ0(y|x)‖1 ≤
h(δ)
Since limδ→0[Lg ·δ+γ(δ)] = 0 and limδ→0[κ(δ)·δ] = 0,

we have:

lim
δ→0

h(δ) = 0

Therefore, θR is an (h(δ), δ)-representation-based un-

learning model.

C. The Impact of Hyperparameter
To examine the influence of hyperparameters on the per-

formance of our proposed method, we conduct experiments

focusing on key hyperparameters λ1 and λ2, as illustrated

in Table 3. We can observe that: (1) Under different hyper-

parameter settings, our method always achieves complete

erasure of unlearning data, that is, the accuracy of unlearn-

ing data is 0%. (2) Within a reasonable range of hyperpa-

rameter variations, we achieve relatively low accuracy fluc-

tuations on the remaining data, with accuracy ranging from



89.68% to 90.10% under the IID setting and from 88.40%

to 89.82% under the Non-IID settings. (3) As the propor-

tion of L1 and L2 in the total loss L increases, the accuracy

of the remaining data first improves and then declines. The

initial improvement can be attributed to the introduction of

the cross-class fusion technique. This technique enhances

the accuracy of the remaining data by aligning the transfor-

mation processes across clients and optimizing both local

and global representation spaces. The subsequent decline

results from an excessive focus on the transformation fu-

sion process. Over-fusion in the representation space re-

duces the classifier’s optimization capability, leading to a

drop in accuracy on the remaining data. (4) A proper bal-

ance between L1 and L2 is essential. Insufficient fusion,

either intra-client or inter-client, would adversely impact

the unlearning model’s accuracy on the remaining data. (5)

λ1 = 0.3 and λ2 = 0.3 are appropriate hyperparameter val-

ues for experiments, which are also used as default values

in our experiments.


