IMG: Calibrating Diffusion Models via Implicit Multimodal Guidance

Supplementary Material

A. Implementation Details
A.1. Baselines and Models.

Our experiments are based on two diffusion models:
SDXL [57], a widely adopted base diffusion model for
alignment tasks, and FLUX.1 [dev] (FLUX) [37], a recent
state-of-the-art flow-matching-based diffusion transformer.
To compare with finetuning-based methods, we use the
top-performing finetuned variant of SDXL, SDXL-DPO,
which applies the Diffusion-DPO [67] technique, demon-
strating the superiority of IMG and its compatibility with
finetuning-based methods. For comparison with editing-
based methods, we adopt the leading SLD as our baseline
to highlight the advantages of IMG in visual comprehen-
sion and aesthetic quality. We further compare IMG with
leading compositional generation methods, ELLA [26] and
CoMat [33], to evaluate the compositional generation capa-
bilities. For MLLM, we finetune LLaVA 1.5-13b [42] on
the Instruct-Pix2Pix dataset [6] for 1 epoch, using the fine-
tuning task format shown in Fig. 11, and extract features
from the last hidden layer for guidance. We utilize the IP-
Adapter [72, 78], trained on SDXL and FLUX, to enable
image prompts and extract image features. The Implicit
Aligner takes both MLLM and image features as input and
is implemented as a stack of 4 cross-attention layers and
2 linear layers. A detailed illustrative diagram of Implicit
Aligner is shown in Fig. 9, accompanied by its execution
pseudo code in Fig. 10.
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Figure 9. Detailed architecture of Implicit Aligner. Our Implicit
Aligner contains 4 cross-attention layers and 2 linear layers. The
number of color cubes here represents the token dimensions rather
than the number of tokens.

A.2. Datasets and Benchmarks.

For Implicit Aligner training, we use the same Pick-a-Pic
training set [36] as Diffusion-DPO [67], which consists of
851K pairs of preferred and unpreferred images generated
under specific prompts. The preference labels are annotated

# Input: feat_i [b, s_1, d_1]: initial image features

# Input: feat_m [b, s_2, d_2]: MLLM guidance features

# Output: feat_a [b, s_1, d_1]: aligned image features
# Step 1: project feat_m to dimension d_1

feat_m proj = Linear (feat_m) # [b, s_2, d_1]

# Step 2: cross-attention between feat_1i and feat_m_proj
atten = Cross-attention(g=feat_i, k,v=feat_m_proj)

# Step 3: process atten via a Linear layer as feat_a
feat_a = Linear(feat_a) # [b, s_1, d_1]

Figure 10. Pseudo code of Implicit Aligner. Our Implict Aligner
(1) projects MLLM features to the same dimension as image fea-
tures; (2) conducts cross-attention between initial image features
and projected MLLM features; and (3) processes attention outputs
with a linear layer as aligned image features.

by human observers. To determine the optimal training
scheme and hyperparameters, we conduct ablation studies
by evaluating the average Pick Score [36] across generated
images using 500 unique prompts from the Pick-a-Pic test
set. The Pick Score is a caption-aware preference scoring
model trained on Pick-a-Pic. For evaluation, we report Hu-
man Preference Scores v2 (HPS v2) across generated im-
ages on the Human Preference Datasets v2 (HPD v2) test
set [71], which includes 3,400 prompts across five cate-
gories, as well as the Parpi-Prompts [79], a diverse dataset
of 1,632 prompts ranging from brief concepts to complex
sentences. HPS v2 is a caption-aware preference scoring
model trained on HPD v2. We also report results on the
T2I-CompBench [28], which contains 1800 test prompts to
validate compositional image generation capabilities. For
each test in user studies, 33 evaluators were asked to do
an A-B test on 30 random image pairs generated by the
base model and IMG with the same prompt. Each unique
pair was assessed by 3 evaluators, and only fully consistent
votes were used to compute the final win rates. For MLLM
finetuning, we extract triplets of {Original Image, Edited
Prompt, Edit Instruction} from the CLIP-filtered Instruct-
Pix2Pix dataset [6], which contains 313K samples.

A.3. MLLM Finetuning.

To customize a pretrained MLLM as a misalignment de-
tector, we finetune LLaVA 1.5-13b [42] on the Instruct-
Pix2Pix dataset [6] for 1 epoch. We use training triplets
consisting of original images Iy, edited prompts 77, and edit
instructions T'r. While I and T} are fed into the MLLM as
inputs, we prompt the model to describe the alignment by
asking questions such as, "How can the <Original Image>
match the intended prompt: <Edited Prompt>?’, and su-
pervise the model’s outputs against Tr (see Fig. 11). To
prevent overfitting, we randomly select one of 100 differ-
ent misalignment detection questions for each sample. The



[ Edited Prompt: A4 photography of a polar bear running on the snow. ]

How to make the <Original Image> match the
intended prompt: <Edited Prompt>?

Edit Instruction:

MLLM Turn the wolf into
a polar bear:

Figure 11. MLLM finetuning on instruction-based image data.
We conduct finetuning on {Original Image, Edited Prompt, Edit
Instruction} triplets from image editing datasets [6] to enhance
MLLM'’s comprehension on prompt-image misalignments.

—

What method will align the
A image with the prompt:
A rubber ball and a metallic car?

J Make the ball a rubber ball. ] A

E Finetuned MLLM

To align the image with the prompt, one can use the
following method:

1. Start by placing the rubber ball on the table.

2. Position the metallic car so that it is directly above
the rubber ball.

3. Adjust the angle and distance of the car until it
appears as if the car is driving over the rubber ball.

4. Take the photo from a perspective that captures
both the rubber ball and the metallic car in the frame.
By following these steps, the image will show a
rubber ball and a metallic car in a way that aligns
with the prompt.

E2YV Original MLLM

Figure 12. Text response comparison of the original MLLM and
our finetuned MLLM. The original MLLM primarily outlines an
image generation process based on the prompt, while our finetuned
MLLM emphasizes aligning the input image with the provided
prompt, showcasing its misalignment detection capability.

fine-tuning hyperparameters follow the standard configura-
tions in [42]. In Fig. 12, we compare the text responses of
the original MLLM and our fine-tuned MLLM. The origi-
nal MLLM primarily outlines an image generation process
based on the prompt, while our finetuned MLLM empha-
sizes aligning the input image with the provided prompt,
showcasing its misalignment detection capability.

A.4. IMG Training and Evaluation.

Our Implicit Aligner is trained on the Pick-a-Pic training
set [36] for 100K iterations with 8 A100 GPUs and a batch
size of 8. We use the AdamW [45] optimizer with a constant
learning rate of 1x10~% and a weight decay of 1x107%.
The ratio parameter in Eq. 7 is set to 1. The reference model
updating step k in Sec. 3.4 is set to 10. The training process
takes about 10-15 hours. For evaluation, we set classifier-

free guidance [24] to 7.5 for SDXL and SDXL-DPO, and
3.5 for FLUX. Sampling steps are set to 50 for SDXL and
SDXL-DPO, and 30 for FLUX. The MLLM in IMG con-
sume about 4% additional inference time and 15G (Qwen-
VL-7B) - 25G (LLaVA-13B) GPU memory.

B. Objective Derivation

This section presents the detailed derivation of our proposed
Iteratively Updated Preference Objective L in Sec. 3.4,
which is a combination of a basic objective Ly, and a pref-
erence objective Lp.r. To enhance generality and clarity,
we substitute the ¢¥ and ¢} in Sec. 3.4 with more gen-
eral forms, x,, and x;. These denote the preferred and
non-preferred outputs of a regression model fy (the Implicit
Aligner in IMG), under a given condition c. In essence, the
training procedure operates on triplets {c, €., ; }.

B.1. Basic Objective

The primary goal of fy is to predict the preferred sample
x,,, given the condition ¢, as formalized in Eq. 4:

Lpase = EC,wmew - f9(c)||§ (®)

Minimizing the above Mean Square Error(MSE) is a
well-established approach, equivalent to performing max-
imum likelihood estimation (MLE) in regression set-
tings [39, 52, 63]. Within this framework, fy(c) predicts the
mean of a noisy distribution, which is assumed to follow a
Gaussian distribution with constant variance ol, consistent
with the probabilistic interpretation [48]:

pg(CL’w|C) = N(ww‘fG(c)y OI)- 9

The MSE in Eq. 8 equals the negative log-likelihood
(NLL) of pg(x|c) [52]. Consequently, training the regres-
sion model fy using MSE implicitly enables it to approxi-
mate the conditional data distribution pyye, (., |€).

B.2. Preference Objective

Besides the basics, we also draw inspiration from direct
preference optimization (DPO) [67] and self-play finetun-
ing (SPIN) [80] to enhance alignment. These preference
learning techniques adhere to a common RLHF princi-
ple [60]: optimize the conditional distribution py(x|c) to
maximize a latent reward model r(c, x), while regularizing
the KL-divergence from a reference distribution piey:

meax Ecz[r(c, z)] — nKL (po(z|c)||pet(z]c)).  (10)
Here pg and pys are prediction distributions of fy and fref,
respectively, where fi.¢ is a copy of fy from an earlier train-
ing iteration, as defined in Eq. 9. The hyperparameter 7
controls the strength of the regularization.



As demonstrated in [60], the unique global optimal solu-
tion of py(x|c) in Eq. 10 is expressed as:

po(le) = pri(z|c) exp (r(c, @) /n) [Z(c), (A1)

where Z(c) = >, pret(To|c) exp (r(c, @o)/n) is the par-
tition function. The reward model is reformulated as:

po(z|c)
pref(m|c)

From the perspective of integral probability metric
(IPM) [51], DPO [67] maximizes the reward gap be-
tween preferred and non-preferred data distributions, while
SPIN [80] maximizes the reward gap between preferred
data distribution and reference data distribution, i.e., Tyt =
fret(€) ~ prer(x]c). As introduced in Sec. 3.4, we establish
a combined objective of DPO and SPIN:

r(e,x) =nlog + nlog Z(c). (12)

mrax | DR [r(c, ) — (e, x1)

DPO

13
T ulr(e, z) (1

- T(C, wref))];

SPIN

where p is a hyperparameter that controls the trade-off. As
demonstrated by [8], a more general form of the optimiza-
tion problem in Eq. 13 is:

—r(e, ;)

+ul(r(e, @)

lein Ec,mw,ml,mmf W’”(c’ $w) (14)
- T(Ca wrd)))]a

where ¢ represents any monotonically decreasing convex
loss function. Eq. 13 can be viewed as the maximization
version of Eq. 14, where [(a) = —a. However, using
such a linear loss function leads to an unbounded objec-
tive value, which may cause undesirable negative infinite
values of r(¢, ;) and r (¢, @) during continuous training.
To address this issue, we adopt a logistic loss function as
suggested by [67, 80]:

I(a) ;== —log sigmoid(a) = log(1 + exp(—a)), (15)
which is non-negative, smooth, and exhibits an exponen-
tially decaying tail as a — oo. The logistic loss function
helps prevent the excessive growth of the reward value 7,
ensuring a stable training process.

By substituting the reward model r in Eq. 14 with Eq. 12
and empirically setting 1 and p to 1, we obtain the final
preference objective as follows:

po(zi|c)

Po(Twlc)
Lpref = EC,mwmz,mmf |:£ (IOg ol le) pref(ﬂ)l|c)

pref(mw|c)
po(Twlc) Po(Trer|c) >}
— l0g )
pref(mref|c)

+ log
pref(xw |C)

(16)

which aligns with Eq. 5. Using the equivalence between
MSE and NLL under the Gaussian prior, as discussed in Ap-
pendix B.1, we obtain a simplified version of Lys for im-
plementation as follows:

Lpref = Ec,ww,wl [ﬁ(—[Q(wa - f@(c)H% - ||£Bw -
— ([l = fo(e)ll3 — |2 —

fref(c)H%)
— [ fret(c) = fo()I3])],
a7

which is consistent with Eq. 6. As discussed in Sec. 3.4, the
reference model f. is iteratively updated. Specifically, we
first randomly initialize f.¢ and later iteratively copy fy to
fret Whenever fy outperforms fi.r. In practice, we execute
the substitution when fy(c) is closer to @, than f.¢(c) for
k consecutive iterations, i.e.,

fref(C)H%)

fret(©)]]3- (18)

To summarize, The final Iteratively Updated Preference
Objective is a combination of Lyase and Lpyr, weighted by
a ratio parameter \:

||mu1 - fQ(C)H% < H;'Cw -

L = Lpgse + >\Lpref~ (19)

C. Additional Quantitative Results

In Tab. 6, we present additional quantitative results on
GenEval [17] and DPGBench [26]. IMG shows consistent
improvements across two benchmarks.

Model GenEvalT DPGBench?t
SDXL-DPO 0.59 76.81
SDXL-DPO + IMG (Ours)  0.61 78.72
FLUX 0.68 80.60
FLUX + IMG (Ours) 0.70 82.77

Table 6. Results on GenEval [17] and DPGBench [26].

D. Additional Qualitative Results

In Fig. 13, we compare IMG with leading MLLM-based im-
age editing methods [15, 30]. IMG showcases better align-
ment performance and visual quality.

In Fig. 14 and Fig. 15, we present additional qualitative
results to show the superior prompt adherence and aesthetic
quality achieved by integrating IMG with various models.

A )ubhez ball and a metallic car. (Instruction: Make the
e

oo ot o

Initial Generation MIGE[1

SmartEdit[2 IMG (Ours)

Figure 13. Comparison between MLLM-based editing and IMG.



A green banana and a brown horse. A blue cup and a green cell phone.

FLUX + IM (Ours) FLUX FLUX + IMG (Ours)

Figure 14. Additional qualitative results by integrating IMG with FLUX.



A green apple and a red kiwi.

A leather jacket and a glass vase.

A dog is standing on its hind legs and trying to
catch a frisbee.

SDXL SDXL + IMG (Ours) SDXL-DPO SDXL-DPO + IMG (Ours)

Figure 15. Additional qualitative results by integrating IMG with SDXL and SDXL-DPO.
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