MotionLab: Unified Human Motion Generation and Editing via the
Motion-Condition-Motion Paradigm

Supplementary Material

1. Details of Rectified Flows
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Figure 1. Demonstration of the difference between diffusion mod-
els and rectified flows. This difference lies in that the trajectory of
diffusion models is based on z; = /(1 — @z)xo + v/are, while
the trajectory of rectified flows is based on z¢ = (1 — t)xo + tx1.
This distinction leads to more robust learning by maintaining a
constant velocity, contributing to the model’s efficiency [7].

Since the trajectory x; from p; to pg should be as straight
as possible, it can be reformulated as the linear interpolation
between xy and z1, and the velocity field v; can be treated
as a constant, namely:

xy = (1 —t)xo + ty (1)
dx Oy (xg, x1,t
Ut:ditt:%:xlfxo @)

Therefore, the training objective can be reformulated as:

1
Lrr(0) = / B a1 (£ 20) — (21 — 20)|2]dt
3)

After the training of rectified flows is completed, the trans-
fer from x to xg can be described via the numerical inte-
gration of ODE:

1
Ty =T — Nvg(twt) )

where N is the discretization number of the interval [0,1].

2. MotionLab Inference

During inference, Classifier-Free Guidance (CFG) [3] is in-
corporated for both motion generation and motion editing

to boost sampling quality and align conditions and target
motion.

For all motion generation tasks, we generate target mo-
tion My with the guidance of arbitrary conditions C":

’UG(MTv ta C) :UQ(MT|ta ®)+
Acve(Mrlt,C) — vo(Mr|t, )] (5)

where ¢ is the timestep and A\¢ > 1 is a hyper-parameter to
control the strength of the corresponding conditional guid-
ance.

For all motion editing tasks, which aim to modify the
source motion based on the condition. Hence, we generate
the target motion M with source motion Mg first and then
condition C:

UO(MT7 t, Mg, C) Z’Ug(MT|t, 0, @)
+ As[v(Mrlt, S, 0) — vo(Mr|t,0,0)]
+ AC['UO(MTH;; Sa C) - U@(MT|t7 57 0)]
(6)

where A\g > 1 is a hyper-parameter to control the strength
of source motion guidance.

3. Memory Usage and Time Cost

The maximum memory usage during training is 23 GB for
each GPU. The memory usage and the time spent during
inference are summarized in the following Table 1.

Metric textgen traj. gen textedit traj. edit in-between style transfer
memory usage (GB)  4.16 4.31 5.83 6.81 4.32 5.74
time spend (AITS) 0.068 0.134 0.160 0.191 0.142 0.152

Table 1. The memory usage and time cost of MotionLab.

4. Additional Quantitative Results

As shown in Table 2, our framework outperforms CondMDI
on all settings, illustrating the effectiveness of our frame-
work in motion in-between.

R-precision Foot skating ~ Keyframe

Method Frames  FIDJ| Top-3t Diversity— ratio, error],

1 0.1551 0.6787 9.5807 0.0936 0.3739

CondMDI [1] 5 0.1731 0.6823 9.3053 0.0850 0.1789
20 0.2253 0.6821 9.1151 0.0806 0.0754

1 0.7547 0.6681 8.9058 0.0779 0.0875

Ours 5 0.0724 0.9146 9.4406 0.0504 0.0283

20 0.0288 0.9914 9.5447 0.0216 0.0215

Table 2. Evaluation of motion in-between with CondMDI [1] on
HumanML3D [2] dataset.



Also, as shown in Figure 2, our framework also outper-
forms MCM-LDM on all metrics, demonstrating the effec-
tiveness of our framework in motion style transfer.
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Figure 2. Comparison of the motion style transfer with MCM-
LDM [5] on a subset of HumanML3D [2]. This shows that our
model has a stronger ability to preserve the semantics of source
motion and a stronger ability to learn the style of style motion.

5. Additional Ablation Studies

To further validate the designs in our framework, we per-
form traditional ablation studies in this section.

To further validate the Aligned ROPE, we also intro-
duce the variant of 3D-Learnable and 3D-ROPE to distin-
guish the source motion, target motion, and trajectory. As
shown in Table 4 and Figure 3, 1D-position encoding is bet-
ter than 3D-position encoding by avoiding introducing dis-
tances between different modalities, and ROPE are better
than learnable position encoding by explicit positional en-
coding. Hence, our 1D-ROPE outperforms all other vari-
ants, demonstrating its effectiveness in embedding the posi-
tion information into tokens.

To further validate the motion curriculum learning, we
adopt three variants: removing the masked pre-training and
directly supervised fine-tuning in order; with masked pre-
training but supervised fine-tuning all tasks together; and
introducing masked reconstruction, motion in-between, and
trajectory-based motion generation in an orderly manner.
As shown in Table 5, motion curriculum learning outper-
forms all other variants, highlighting the effectiveness of
masked pre-training and fine-tuning tasks in order to avoid
gradient conflicts between different tasks. Specifically, the
variant of masked pre-training in order to demonstrate the
necessity of introducing motion in-between and trajectory-
based motion generation together, or it will greatly weaken
the performance of the model in the latter task.

The explanation of “w/o task instruction modulation”
uses "null’ as the instruction for all tasks, rather than learned
task tokens or one-hot encoding vectors. We have con-
ducted an additional ablation experiment to examine these
situations, which can be suboptimal due to the random ini-
tialization of their parameters, as shown in Table 3.

textgen. (FID) traj. gen. (avg.err) textedit (R@1) _traj edit (R@I) _in-between (avg. err) _style transfer (CRA) _ style transfer (SRA)
0223 00401 5596 7001 00288 7055
0

0.187 3618 7152 00287 43.20 66.98
0.183 5603 7189 00288 41.20 6498

56
0.167 00334 5634 7265 0.0283 62 21

Table 3. Ablation studies of Task Instruction Modulation.

To further validate the choice and combinations of the
tasks, we also introduce the variants of different tasks. As
shown in Table 6, improper combination of tasks will cause
the unified framework to be weaker than the ours special-
ist models, while our carefully selected combination of
all tasks makes our unified framework beat ours specialist
models.

6. Representation for Each Modality

We represent the features of all modalities as tokens for
the attention mechanism [6]. Specifically, source motion
and target motion are represented as Mg € RV*P and
My € RN¥*P "and we first ignore timestep ¢ here. For the
instruction, it is represented as I € R*7%® extracted from
the CLIP [4]. For available conditions C, the text is repre-
sent as p € R77%768 extracted from the last hidden layer of
CLIP, the trajectory is represented as b € RV *7*3_and the
style is represented as s € R1*?12 extracted from [8].

7. Instructions for Each Task

As shown in the Table 7, the instructions in the Task Instruc-
tion Modulations for each task are presented, which benefits
our framework to distinguish different tasks.

8. Classifier Free Guidance for Each Task

As shown in Table 8, strengths of classifier-free guidance
for each task are presented, which contribute to the results’
quality during sampling. We conduct ablation experiments
based on the hyperparameters provided by the baseline and
finally obtain the above hyperparameters.

9. 3D Assets

We have borrowed some 3D assets for our video and
figure from the Internet, including Dojo Matrix Drunken
Wrestlers, Basketball Court, Grandma‘s Place, DAE Dio-
rama retake — Small farm, DAE Diorama retake — Small
farm, Japanese Small Shrine Temple 0002.


https://sketchfab.com/3d-models/dojo-matrix-drunken-wrestlers-a7902c72cde2447986ff89e13e78a11f
https://sketchfab.com/3d-models/dojo-matrix-drunken-wrestlers-a7902c72cde2447986ff89e13e78a11f
https://sketchfab.com/3d-models/basketball-court-77af6cb6181e4fe7b56bf15035b33422
https://sketchfab.com/3d-models/grandmas-place-02fa0075c38a482187c78ac0eacec214
https://sketchfab.com/3d-models/dae-diorama-retake-small-farm-252ad9f2245e47cba4fbb0cfe5eb6445
https://sketchfab.com/3d-models/dae-diorama-retake-small-farm-252ad9f2245e47cba4fbb0cfe5eb6445
https://sketchfab.com/3d-models/dae-diorama-retake-small-farm-252ad9f2245e47cba4fbb0cfe5eb6445
https://sketchfab.com/3d-models/dae-diorama-retake-small-farm-252ad9f2245e47cba4fbb0cfe5eb6445
https://www.fab.com/listings/fe784b4e-ab8b-44b7-885d-140b0f81448b

Ablation Studies of Aligned ROPE on Motion In-Between
walks sideways but back and forth

walks in a curved line.

balances on one leg and shakes their foot and then swaps

Figure 3. Ablation results of MotionLab on the motion in-between (with text). Beige motion is use 1D-learnable position encoding, purple
motion use Aligned ROPE, and gray motions are the poses provided in keyframes, demonstrating the importance of Aligned ROPE.

Method text gen. (FID) traj. gen. (avg. err.) textedit (R@1) traj. edit (R@1) in-between (avg. err.) style transfer (CRA)  style transfer (SRA)
1D-Learnable 0.246 0.0886 45.39 61.99 0.0756 39.40 56.59
3D-Learnable 0.346 0.1865 35.46 53.74 0.1460 36.99 58.81

3D-ROPE 0.241 0.0579 51.34 70.00 0.0354 42.96 62.46
1D-ROPE (ours) 0.167 0.0334 56.34 72.65 0.0273 44.62 69.21
Table 4. Ablation studies of our MotionLab’s position encoding on each task.
Method text gen. (FID) traj. gen. (avg. err.) textedit (R@1) traj. edit (R@1) in-between (avg. err.) style transfer (CRA) style transfer (SRA)
random selection based on FID 2236 0.1983 28.56 36.61 0.1682 26.61 34.23
removing the masked pre-training 0.861 0.0932 44.99 63.92 0.0639 39.63 57.59
supervised fine-tuning all tasks together 1.331 0.1317 38.19 55.22 0.1143 36.60 50.59
masked pre-training in order 0.256 0.0423 56.33 69.31 0.0264 42.67 64.39
motion curriculum learning (ours) 0.167 0.0334 56.34 72.65 0.0273 44.62 69.21
Table 5. Ablation studies of our MotionLab’s motion curriculum learning on each task.
Task Metric
text gen. traj. gen textedit traj. edit in-between style transfer | text gen. (FID) traj. gen. (avg. err.) textedit (R@1) traj. edit (R@1) in-between (avg. err.) style transfer (CRA) style transfer (SRA)
ours specialist models 0.209 41.44 59.86 0.0371 43.53 67.55
v X X X X v 0.240 - - - - 41.23 65.53
v X v X X X 0.235 - 52.79 - - - -
v v X X v X 0.176 0.0364 - - 0.0297 - -
v v v v v X 0.171 0.0344 55.10 72.20 0.0287 - -
4 v v v v 4 0.167 0.0334 56.34 72.65 0.0273 44.62 69.21
Table 6. Ablation studies of our MotionLab’s task combinations.
Task Instruction Task Source Motion Guidance ~ Condition Guidance
unconditional generation “reconstruct given masked source motion.” trajectory-based generation (without text) — 1.5
masked source motion generation “reconstruct given masked source motion.” in-between (without text) - 1.5

reconstruct source motion “reconstruct given masked source motion.” text-based generation - 5.75
trajectory-based generation (without text) ~ “generate motion by given trajectory.” style-based generation - 1.5
in-between (without text) “generate motion by given key frames.” trajectory-based editing (without text) 225 225
style-based generation “generate motion by given style.” text-based editing 225 225
trajectory-based editing “edit source motion by given trajectory.” style transfer 1.5 1.5
text-based editing “edit source motion by given text.” in-between (with text) — 1.75
style transfer “generate motion by the given style and content.” trajectory-based generation (with text) - 1.75
in-between (with text) “generate motion by given text and key frames.” trajectory-based editing (with text) 2 2

trajectory-based generation (with text)
text-based generation

“generate motion by given text and trajectory.”
“generate motion by given text.”

Table 8. Strength of classifier free guidance for each task.

Table 7. Instructions in the Task Instruction Modulations for each
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