
SCAN: Bootstrapping Contrastive Pre-training for Data Efficiency –
Supplementary Material

Yangyang Guo, Mohan Kankanhalli
National University of Singapore, Singapore

guoyang.eric@gmail.com, mohan@comp.nus.edu.sg

Abstract

This supplementary material is structured as follows. First,
we present the detailed algorithm of the proposed method.
Next, we describe the baseline methods used for compari-
son. Finally, we provide an in-depth analysis of additional
experiments.

1. SCAN Algorithm

We present a detailed algorithm of our proposed SCAN in
Algorithm 1. This algorithm is applicable to contrastive
pre-training models including CLIP and MoCo.

2. More Experimental Settings

2.1. Pre-Training Details

Our primary objective in this study is to assess the efficacy
of our proposed data-efficient method. Consequently, we
did not conduct an extensive parameter search and instead
utilized a universal setting across different models.

Due to limitations in computational resources, most of
our pre-training experiments were conducted using four
NVIDIA A5000 GPUs. Specifically, for CLIP models, we
employed 32 epochs, a learning rate of 1e-3, and a weight
decay of 0.1. Various batch sizes are detailed in Table 1. For
the downstream image classification task, we fine-tuned the
pre-trained models on a single NVIDIA A100-40G GPU.
Fine-tuning comprises 10 epochs with a learning rate of 1e-
3 and a weight decay of 0.1.

Regarding the pre-training of MoCo, we utilized the
original implementation1. We employed batch sizes of 600
and 370 for ViT-16/S and ViT-B/16, respectively.

2.2. Compared Baselines

We compared with the following four baselines in this work:

1https://github.com/facebookresearch/moco-v3.

• Random prunes ρ samples with randomness for each
epoch. Notably, it falls under dynamic pruning meth-
ods as the pruned samples vary across epochs.

• SemDeDup [1] identifies the semantic duplicates
based on embedding similarities. We used one pub-
lic implementation2. This method is applicable only to
multi-modal models such as CLIP.

• D-Pruning [3] estimate the parameter influence of a
training example through the removal of it. We uti-
lized the official implementation3 for CLIP models
only. We abandoned the use of MoCo due to its hard-
to-configure running environment.

• Info-Batch [2] is a recent robust dataset pruning base-
line. It prunes a portion of less informative samples
and then rescales the gradients of the remaining sam-
ples to approximate the original gradients. We fol-
lowed the original code4 to re-implement it for our ex-
periments.

3. More Experimental Results

We present additional fine-tuning results of CLIP in Table 3
and Table 4. Furthermore, Table 5 shows the results of lin-
ear probing for CLIP. It is evident that our proposed SCAN
method consistently achieves superior performance across
various settings.
Experimental Results on CLIP-Benchmark. We utilized
the CLIP-Benchmark tool to assess the performance of both
CLIP and our SCAN method across 19 additional datasets.
For this evaluation, we employed models pre-trained on
the CC12M+ datasets. The results, presented in Table 6,
demonstrate that our SCAN method delivers performance
competitive with the original CLIP.
Results w.r.t. Pre-defined Thresholds. To assess the im-
pact of varying thresholds, we evaluated two model archi-
tectures, RN50 and ViT-B/32, using threshold values from
0.1 to 0.7, with a step size of 0.2. The ImageNet zero-shot

2https://github.com/BAAI-DCAI/Dataset-Pruning/tree/main.
3https://github.com/BAAI-DCAI/Dataset-Pruning/tree/main.
4https://github.com/henryqin1997/InfoBatch.



Algorithm 1: Dataset Pruning of SCAN.
Input: Full training data D, Number of training

epochs τstop, Number of mutation epochs
τcos, Pre-initialized losses Lpre and Lcur,
Threshold value Ttd and an infinitesimal
value ϵ.

Output: Pre-trained modelM
while τcur < τstop do

// Pre-Pruning Warm-Up

if (L̂pre − L̂cur)/(L̂pre + ϵ) ≥ Ttd then
for Batched sample Dt ∈ D do

Forward and updateM on Dt;
end
L̂pre ← L̂cur;
Get the updated current epoch loss L̂cur;

end
else

// Pruning Data Preparation
if τcur mod (τcos + 1) = 0 then

for Batched sample Dt ∈ D do
Forward and updateM on Dt;
Obtain redundant set Dred

t and
ill-matched set Dill

t ;
Obtain the overall pruning subset
D′

t = Dred
t | Dill

t ;
end
Accumulate all the candidate pruning

data D′
;

end
// Dataset Mutation
else

Obtain the pruning ratio ρcur;
Randomly prune ρcur|D

′ | samples from
D′

;
for Batched sample Dt ∈ D \ D

′

ρ do
Forward and updateM on Dt

end
end

end
τcur ← τcur + 1

end

performance results are summarized in the table below. As
indicated, the models perform optimally at threshold values
of 0.3 or 0.5. For simplicity and consistency, we selected a
threshold of 0.3 for subsequent model evaluations.
Different Pruning Ratios of MoCo. The performance
variations with different pruning ratios (ρ) for the MoCo
model are depicted in Fig. 1. It is evident that as the prun-
ing ratios increase, there is a general degradation in perfor-
mance.
More Visualization of Ill-matched Samples from CLIP.

We further visualize some ill-matched samples as indicated
by SCAN in Fig. 2.
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Table 1. Batch sizes for pre-training and fine-tuning CLIP models.

PT RN50 RN101 ViT-S/32 ViT-S/16 ViT-B/32 ViT-B/16 Swin-Base

✓ 256×4 200×4 800×4 400×4 480×4 200×4 100×4

✗ 384 225 1024 600 768 300 160

Base ViT-B/16 RN101 RN50 ViT-S/16 ViT-B/32 ViT-S/32

CLIP 87 79 60 49 37 32
Static 61 55 42 34 26 23

Info-Batch 64 60 44 34 28 25
SCAN 64 62 45 34 30 26

Table 2. Pre-training time in hours.

Table 3. Performance comparison of CLIP models on the CC3M+ pre-trained datasets. All methods utilize 30% fewer pre-trained data
samples than CLIP. Consequently, they also require approximately 30% less pre-training time. The best results (excluding the original
CLIP model) are highlighted in bold.

Architecture Method IN Zero-Shot CIFAR10 CIFAR100 IN IN-V2 IN-R
Top-1 Top-5

RN50

CLIP 17.06 36.21 95.32 80.01 73.81 61.89 36.09

Random 11.02 25.23 94.01 75.12 70.22 58.04 31.80
SemDeDup [1] 11.98 26.30 94.53 76.81 71.51 58.79 32.31
D-Pruning [3] 11.72 26.65 94.48 76.73 71.11 58.79 31.88
Info-Batch [2] 16.44 36.74 95.30 79.40 73.01 61.49 35.04

SCAN 16.91 35.79 95.30 80.24 72.91 60.59 34.53

ViT-S/32

CLIP 13.70 29.33 90.59 71.74 55.60 42.81 23.91

Random 06.57 16.19 86.61 60.18 48.87 34.48 17.98
SemDeDup [1] 05.33 14.05 85.16 59.87 47.39 35.56 17.70
D-Pruning [3] 04.78 12.91 84.21 57.96 46.53 34.77 16.88
Info-Batch [2] 10.89 26.91 90.02 69.99 50.53 39.61 19.69

SCAN 14.88 31.47 90.12 70.33 54.13 41.29 22.70

ViT-S/16

CLIP 18.41 37.41 96.09 81.31 68.49 55.79 29.52

Random 07.80 21.53 93.58 72.11 62.13 49.63 19.01
SemDeDup [1] 09.57 22.00 93.43 74.37 62.30 48.89 23.04
D-Pruning [3] 08.60 20.35 93.26 73.72 61.70 48.97 22.46
Info-Batch [2] 16.19 35.06 95.64 80.03 67.57 53.52 27.64

SCAN 17.31 35.51 95.53 80.27 66.86 53.59 27.34

ViT-B/32

CLIP 14.97 32.02 94.43 77.72 58.33 45.70 25.59

Random 07.44 18.88 89.96 69.41 50.43 40.62 18.07
SemDeDup [1] 07.20 17.50 90.88 70.13 50.99 38.34 19.76
D-Pruning [3] 06.51 16.13 60.07 69.11 50.01 38.43 19.03
Info-Batch [2] 12.44 30.98 93.57 75.44 55.99 43.30 24.64

SCAN 16.48 33.60 93.77 77.63 56.64 44.25 24.10



Table 4. Performance comparison of CLIP models on the CC12M+ pre-trained datasets. All methods utilize 30% fewer pre-trained data
samples than CLIP. Consequently, they also require approximately 30% less pre-training time. The best results (excluding the original
CLIP model) are highlighted in bold.

Architecture Method IN Zero-Shot CIFAR10 CIFAR100 IN IN-V2 IN-R
Top-1 Top-5

RN50

CLIP 20.95 44.41 95.68 80.75 74.93 62.81 38.36

Random 12.39 35.96 94.89 76.96 71.65 59.71 32.03
SemDeDup [1] 15.89 36.76 95.00 78.12 72.46 60.01 33.86
D-Pruning [3] 11.19 26.53 94.31 77.69 71.96 59.19 33.44
Info-Batch [2] 20.63 45.10 95.68 79.88 73.53 61.23 36.67

SCAN 23.03 47.83 95.63 81.03 74.28 62.20 38.14

ViT-S/32

CLIP 26.48 51.32 93.23 76.32 61.53 48.60 30.57

Random 08.79 16.93 87.79 63.04 50.12 38.09 21.11
SemDeDup [1] 05.04 13.49 86.43 61.67 49.46 37.37 19.29
D-Pruning [3] 04.54 12.43 85.86 61.81 48.39 36.57 18.62
Info-Batch [2] 10.07 26.63 91.11 67.94 53.47 40.91 20.77

SCAN 25.27 50.08 91.86 75.27 59.87 46.96 27.86

ViT-S/16

CLIP 27.09 53.57 96.62 84.05 71.40 58.40 34.24

Random 16.58 35.43 95.00 79.90 67.78 54.12 26.23
SemDeDup [1] 10.56 26.52 94.46 76.65 65.32 51.37 25.52
D-Pruning [3] 09.37 22.16 93.42 75.52 63.53 50.79 24.43
Info-Batch [2] 21.28 45.56 96.09 82.13 68.87 55.90 29.58

SCAN 28.46 54.56 96.24 83.32 70.40 57.10 31.85
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Figure 1. Downstream performance variation of ViT-S/16 MoCo model w.r.t. different pruning ratios.



Table 5. Linear probing results of six CLIP models. All methods utilize 30% fewer pre-trained data samples than CLIP. Consequently,
they also require approximately 30% less pre-training time. The best results (excluding the original CLIP model) are highlighted in bold.
A dash (-) indicates the collapse of pre-training, resulting in impaired evaluation of downstream tasks.

Arc Method CC3M+ CC12M+

CF-10 CF-100 IN IN-V2 IN-R CF-10 CF-100 IN IN-V2 IN-R

R
N

50

CLIP 95.58 80.31 73.96 61.60 35.59 95.69 81.88 74.96 62.85 38.57

Random 93.89 75.45 70.25 58.05 31.78 94.00 76.43 70.99 58.78 32.09
SemDeDup [1] 94.92 77.16 71.62 58.99 32.44 94.88 78.00 72.22 59.70 33.16
D-Pruning [3] 94.50 76.78 71.00 57.98 31.70 94.30 77.70 71.77 59.01 33.20
Info-Batch [2] 95.29 79.39 73.07 61.03 34.66 95.66 79.84 73.23 61.10 36.63

SCAN 95.46 80.35 73.07 61.25 34.59 95.62 81.28 74.27 62.66 37.30

R
N

10
1

CLIP 95.92 82.04 75.10 63.61 38.78 96.03 82.73 75.78 63.93 40.09

Random 95.00 78.13 73.79 60.20 36.12 95.02 78.34 73.99 60.27 36.13
SemDeDup [1] 94.84 79.25 74.08 61.94 36.74 95.01 78.02 73.89 59.91 33.80
D-Pruning [3] 94.79 72.12 73.74 61.66 35.64 94.78 78.83 74.08 61.28 37.09
Info-Batch [2] 95.08 80.76 74.13 62.89 37.57 95.82 81.56 75.02 63.21 39.21

SCAN 95.67 81.36 74.42 63.07 37.86 95.93 82.12 75.61 63.87 39.32

V
iT

-S
/3

2

CLIP 91.65 72.23 55.52 43.00 23.48 93.29 77.06 61.73 48.84 30.40

Random 87.00 61.31 49.97 36.07 20.88 87.79 63.04 50.12 38.09 21.11
SemDeDup [1] 83.46 60.06 47.65 35.51 17.61 86.23 61.77 49.20 37.10 19.11
D-Pruning [3] 84.21 58.73 46.57 35.03 16.95 85.82 61.09 47.99 36.58 18.00
Info-Batch [2] 89.30 70.02 50.51 39.58 19.78 91.02 68.90 53.49 40.69 20.71

SCAN 89.37 71.05 54.24 41.30 22.65 91.88 74.86 59.90 46.90 27.90

V
iT

-S
/1

6

CLIP 96.09 81.39 68.49 55.19 29.06 96.66 84.35 71.53 58.56 33.85

Random 93.62 73.37 63.02 49.96 20.62 94.90 79.91 67.90 54.10 26.24
SemDeDup [1] 93.21 73.85 62.34 49.40 22.54 94.00 77.01 64.45 51.40 25.51
D-Pruning [3] 93.28 73.09 61.67 48.99 22.48 93.41 75.43 63.42 50.77 24.41
Info-Batch [2] 95.26 80.46 67.76 53.49 27.11 96.03 82.11 68.78 55.78 29.59

SCAN 95.31 80.00 67.04 53.75 27.41 96.37 82.71 70.32 57.17 31.89

V
iT

-B
/3

2

CLIP 94.36 77.84 58.43 45.79 25.50 95.65 81.62 63.40 50.33 31.28

Random 90.05 69.26 50.23 40.54 18.03 90.13 69.98 51.99 41.01 20.08
SemDeDup [1] 90.44 69.86 50.89 38.15 19.89 90.77 70.00 51.19 39.80 20.91
D-Pruning [3] 90.06 69.08 50.04 37.87 19.11 90.07 69.65 51.23 37.99 20.43
Info-Batch [2] 93.54 75.49 56.98 44.03 24.08 - - - - -

SCAN 94.00 76.91 56.72 44.12 24.21 95.05 81.21 61.96 48.42 29.53

V
iT

-B
/1

6

CLIP 96.27 82.74 70.87 57.77 29.82 96.77 84.48 72.37 59.07 33.24

Random 91.60 73.61 50.59 40.52 21.72 94.56 76.67 67.57 54.40 27.10
SemDeDup [1] 94.16 76.34 66.60 53.13 25.60 94.17 76.66 67.10 53.39 27.11
D-Pruning [3] 93.48 75.41 65.90 52.69 24.57 93.88 75.99 65.98 53.00 26.05
Info-Batch [2] 96.10 81.06 70.30 56.10 28.48 96.12 81.78 71.34 56.25 31.12

SCAN 96.16 81.10 69.55 56.48 28.76 96.12 83.97 71.82 58.31 32.48
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Text: during sports team vs 
game

Text: look out onto the blue 
waters while taking a dip in pool

Text: an aerial view of home

Text: biological species 
crawling on a banana leaf

Text: the first passengers 
disembark the flight

Text: a fountain of an embracing 
young couple under an umbrella

Text: the fish pond and 
remains in the grounds

Text: magic blue glow under the 
glacier, photo by person

Text: select a wallpaper for 
children's rooms-wall to feel

Figure 2. More ill-matched samples obtained by our SCAN approach.



Table 6. Comparison of ViT-B/32 and ViT-B/16 using CLIP and
SCAN on CLIP-Benchmark.

Dataset ViT-B/32 ViT-B/16

CLIP SCAN CLIP SCAN

FER2013 18.50 22.27 18.36 20.77
ImageNet-O 30.70 30.55 33.05 31.20
ImageNet-R 29.23 31.91 31.08 29.67
ImageNetv2 20.19 21.80 21.39 20.90
ObjectNet 15.13 13.93 14.84 15.03
rendered-sst2 50.08 49.92 51.12 50.02
STL-10 85.18 86.06 85.11 85.04
SUN397 40.55 41.02 41.95 41.29
VOC-2007 47.22 42.62 52.59 48.48
Caltech-101 64.93 68.56 65.63 65.46
Dmlab 20.02 11.81 17.77 16.19
DTD 15.66 16.44 16.24 13.83
EuroSat 21.92 29.81 34.20 29.67
Flowers 18.63 24.70 20.80 20.13
KITTI 32.63 32.77 35.49 35.59
PCam 50.33 52.23 50.32 52.69
Pet 31.28 43.06 36.41 35.84
RESISC45 23.41 23.05 21.28 19.38
SVHN 16.99 06.97 09.73 07.86

Table 7. Performance comparison of RN50 and ViT-B/32 at dif-
ferent thresholds.

Threshold RN50 ViT-B/32

Top-1 Top-5 Top-1 Top-5

0.1 15.80 35.21 14.75 31.58
0.3 16.91 35.79 16.48 33.60
0.5 18.22 37.79 16.04 33.19
0.7 18.20 37.78 16.48 33.23


