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Abstract

This supplementary material is structured as follows. First,
we present the detailed algorithm of the proposed method.
Next, we describe the baseline methods used for compari-
son. Finally, we provide an in-depth analysis of additional
experiments.

1. SCAN Algorithm

We present a detailed algorithm of our proposed SCAN in
Algorithm 1. This algorithm is applicable to contrastive
pre-training models including CLIP and MoCo.

2. More Experimental Settings

2.1. Pre-Training Details

Our primary objective in this study is to assess the efficacy
of our proposed data-efficient method. Consequently, we
did not conduct an extensive parameter search and instead
utilized a universal setting across different models.

Due to limitations in computational resources, most of
our pre-training experiments were conducted using four
NVIDIA A5000 GPUs. Specifically, for CLIP models, we
employed 32 epochs, a learning rate of le-3, and a weight
decay of 0.1. Various batch sizes are detailed in Table 1. For
the downstream image classification task, we fine-tuned the
pre-trained models on a single NVIDIA A100-40G GPU.
Fine-tuning comprises 10 epochs with a learning rate of le-
3 and a weight decay of 0.1.

Regarding the pre-training of MoCo, we utilized the
original implementation'. We employed batch sizes of 600
and 370 for ViT-16/S and ViT-B/16, respectively.

2.2. Compared Baselines

We compared with the following four baselines in this work:

Uhttps://github.com/facebookresearch/moco-v3.

* Random prunes p samples with randomness for each
epoch. Notably, it falls under dynamic pruning meth-
ods as the pruned samples vary across epochs.

e SemDeDup [I] identifies the semantic duplicates
based on embedding similarities. We used one pub-
lic implementation”. This method is applicable only to
multi-modal models such as CLIP.

e D-Pruning [3] estimate the parameter influence of a
training example through the removal of it. We uti-
lized the official implementation® for CLIP models
only. We abandoned the use of MoCo due to its hard-
to-configure running environment.

* Info-Batch [2] is a recent robust dataset pruning base-
line. It prunes a portion of less informative samples
and then rescales the gradients of the remaining sam-
ples to approximate the original gradients. We fol-
lowed the original code” to re-implement it for our ex-
periments.

3. More Experimental Results

We present additional fine-tuning results of CLIP in Table 3
and Table 4. Furthermore, Table 5 shows the results of lin-
ear probing for CLIP. It is evident that our proposed SCAN
method consistently achieves superior performance across
various settings.

Experimental Results on CLIP-Benchmark. We utilized
the CLIP-Benchmark tool to assess the performance of both
CLIP and our SCAN method across 19 additional datasets.
For this evaluation, we employed models pre-trained on
the CC12M+ datasets. The results, presented in Table 6,
demonstrate that our SCAN method delivers performance
competitive with the original CLIP.

Results w.r.t. Pre-defined Thresholds. To assess the im-
pact of varying thresholds, we evaluated two model archi-
tectures, RN50 and ViT-B/32, using threshold values from
0.1 to 0.7, with a step size of 0.2. The ImageNet zero-shot

Zhttps://github.com/BA AI-DCAI/Dataset-Pruning/tree/main.
3https://github.com/BA AI-DCAI/Dataset-Pruning/tree/main.
“https://github.com/henryqin1997/InfoBatch.



Algorithm 1: Dataset Pruning of SCAN.

Input: Full training data D, Number of training
epochs Ts;0p, Number of mutation epochs
Teos» Pre-initialized losses L. and Ly,
Threshold value T34 and an infinitesimal
value e.
Output: Pre-trained model M
while 7., < T10p do
// Pre-Pruning Warm-Up
if (/:'p,»e - LACW)/(EAW@ + €) > T}q then
for Batched sample D; € D do
| Forward and update M on Dy;
end
‘CApre — [:cur;
Get the updated current epoch loss [:CM;
end
else
// Pruning Data Preparation
if 7eur mod (7c0s + 1) = 0 then
for Batched sample D, € D do
Forward and update M on Dy;
Obtain redundant set Dy*¢ and
ill-matched set DV,
Obtain the overall pruning subset
D, = Dy | D}t
end
Accumulate all the candidate pruning
data D/;

end
// Dataset Mutation

else
Obtain the pruning ratio pcy;

Randomly prune pe,,|D | samples from

>

for Batched sample D, € D\ D, do
| Forward and update M on Yi
end

end

end
TCUT <_ TC’U.’I‘ + 1

end

performance results are summarized in the table below. As
indicated, the models perform optimally at threshold values
of 0.3 or 0.5. For simplicity and consistency, we selected a
threshold of 0.3 for subsequent model evaluations.
Different Pruning Ratios of MoCo. The performance
variations with different pruning ratios (p) for the MoCo
model are depicted in Fig. 1. It is evident that as the prun-
ing ratios increase, there is a general degradation in perfor-
mance.

More Visualization of Ill-matched Samples from CLIP.

We further visualize some ill-matched samples as indicated
by SCAN in Fig. 2.
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Table 1. Batch sizes for pre-training and fine-tuning CLIP models.

PT | RN50 RNIOI | ViT-S/32 ViT-S/16 | ViT-B/32 ViT-B/16 | Swin-Base
v | 256x4  200x4 | 800x4  400x4 | 480x4  200x4 | 100x4
X | 38 225 | 1024 600 | 768 300 | 160

Base ‘ViT—B/l6 RN101 RN50 ViT-S/16 ViT-B/32  ViT-S/32

CLIP 87 79 60 49 37 32
Static 61 55 42 34 26 23
Info-Batch 64 60 44 34 28 25
SCAN 64 62 45 34 30 26

Table 2. Pre-training time in hours.

Table 3. Performance comparison of CLIP models on the CC3M+ pre-trained datasets. All methods utilize 30% fewer pre-trained data
samples than CLIP. Consequently, they also require approximately 30% less pre-training time. The best results (excluding the original
CLIP model) are highlighted in bold.

‘ IN Zero-Shot

Architecture ‘ Method ‘ CIFAR10 CIFAR100 ‘ IN IN-V2 IN-R

‘ ‘ Top-1 Top-5 ‘ ‘
| CLIP | 17.06 3621 | 9532 80.01 | 7381 61.89 36.09
Random 1102 2523 | 94.01 7512 | 7022 5804 31.80
RN50 SemDeDup [1] | 11.98 2630 | 94.53 76.81 | 71.51 5879 3231
D-Pruning [3] | 1172 26.65 | 94.48 7673 | 71.11 5879 31.88
Info-Batch [2] | 16.44 36.74 | 9530 7940 | 73.01 6149 35.04
| SCAN | 1691 3579 | 95.30 80.24 | 7291 60.59 3453
| CLIP | 1370 29.33 | 90.59 71.74 | 55.60 42.81 2391
Random 06.57 16.19 | 86.61 60.18 | 48.87 3448 17.98
ViT-S/32 SemDeDup [1] | 05.33 1405 | 85.16 59.87 | 4739 3556 17.70
D-Pruning [3] | 0478 1291 | 84.21 5796 | 46.53 3477 16.88
Info-Batch [2] | 10.89 2691 | 90.02 69.99 | 5053 39.61 19.69
| SCAN | 1488 3147 | 90.12 7033 | 5413 4129 22.70
| CLIP | 1841 3741 | 96.09 8131 | 6849 5579 29.52
Random 07.80 2153 | 93.58 7211 | 6213 49.63 1901
ViT-8/16 SemDeDup [1] | 09.57 22.00 | 93.43 7437 | 6230 48.89 23.04
D-Pruning [3] | 08.60 20.35 | 93.26 7372 | 6170 4897 2246
Info-Batch [2] | 16.19 35.06 | 95.64 80.03 | 67.57 53.52 27.64
| SCAN | 17.31 3551 | 9553 80.27 | 66.86 53.59 27.34
| CLIP | 1497 3202 | 94.43 7772 | 5833 4570 2559
Random 0744 1888 | 89.96 69.41 | 5043 40.62 18.07
ViT-B/32 SemDeDup [1] | 07.20 17.50 | 90.88 70.13 | 5099 3834 19.76
D-Pruning [3] | 06.51 16.13 | 60.07 69.11 | 5001 3843 19.03
Info-Batch [2] | 12.44 3098 | 93.57 7544 | 5599 4330 24.64

| SCAN | 16.48 33.60 | 93.77 77.63 | 56.64 44.25 24.10




Table 4. Performance comparison of CLIP models on the CC12M+ pre-trained datasets. All methods utilize 30% fewer pre-trained data
samples than CLIP. Consequently, they also require approximately 30% less pre-training time. The best results (excluding the original
CLIP model) are highlighted in bold.

‘ IN Zero-Shot

Architecture ‘ Method ‘ CIFAR10 CIFAR100 ‘ IN IN-V2 IN-R

‘ ‘ Top-1 Top-5 ‘ ‘
| CLIP | 2095 4441 | 95.68 80.75 | 7493 62.81 3836
Random 1239 3596 | 94.89 76.96 | 71.65 59.71  32.03
RN50 SemDeDup [1] | 15.89 36.76 | 95.00 78.12 | 7246 60.01 33.86
D-Pruning [3] | 11.19 2653 | 94.31 77.69 | 71.96  59.19 33.44
Info-Batch [2] | 20.63 45.10 | 95.68 79.88 | 7353 6123  36.67
| SCAN | 23.03 47.83 | 95.63 81.03 | 7428 6220 38.14
| CLIP | 26.48 5132 | 93.23 76.32 | 61.53  48.60 30.57
Random 08.79 1693 | 87.79 63.04 | 50.12 3809 2111
ViT-S/32 SemDeDup [1] | 05.04 1349 | 86.43 61.67 | 49.46 3737 1929
D-Pruning [3] | 0454 1243 | 85.86 61.81 | 4839 3657 18.62
Info-Batch [2] | 10.07 26.63 | 91.11 67.94 | 5347 4091 2077
| SCAN | 2527 50.08 | 91.86 7527 | 59.87 46.96 27.86
| CLIP | 27.09 5357 | 96.62 84.05 | 71.40 5840 3424
Random 1658 3543 | 95.00 79.90 | 6778 5412 2623
ViT-S/16 SemDeDup [1] | 10.56 2652 | 94.46 76.65 | 6532 5137 2552
D-Pruning [3] | 09.37 2216 | 93.42 75.52 | 6353 5079 2443
Info-Batch [2] | 21.28 4556 | 96.09 82.13 | 68.87 5590 29.58
SCAN | 2846 5456 | 96.24 83.32 | 7040 57.10 3185
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Figure 1. Downstream performance variation of ViT-S/16 MoCo model w.r¢. different pruning ratios.



Table 5. Linear probing results of six CLIP models. All methods utilize 30% fewer pre-trained data samples than CLIP. Consequently,
they also require approximately 30% less pre-training time. The best results (excluding the original CLIP model) are highlighted in bold.
A dash (-) indicates the collapse of pre-training, resulting in impaired evaluation of downstream tasks.

arc | Method | CC3M+ | CCI2M+
| CF-10 CF-100 | IN  IN-V2 IN-R | CF-10 CF-100 | IN IN-V2 IN-R
| CLIP | 9558 8031 | 73.96 61.60 3559 | 95.69  81.88 | 7496 62.85 38.57
o | Random 9389 7545 | 7025 5805 3178 | 9400 7643 | 7099 5878 32.09
Z | SemDeDup[l] | 9492  77.16 | 71.62 58.99 3244 | 9488 7800 | 7222 59.70 33.16
# | D-Pruning [3] | 9450 7678 | 71.00 57.98 3170 | 9430 7770 | 71.77 59.01 3320
Info-Batch [2] | 9529  79.39 | 73.07 61.03 34.66 | 95.66  79.84 | 7323 61.10 36.63
| SCAN | 9546 8035 | 73.07 61.25 3459 | 9562 81.28 | 7427 62.66 37.30
| CLIP | 9592 8204 | 7510 63.61 3878 | 96.03 8273 | 7578 6393  40.09
= | Random 9500 7813 | 7379 6020 36.12 | 9502 7834 | 7399 6027 36.13
Z | SemDeDup [1] | 94.84  79.25 | 7408 61.94 3674 | 9501 7802 | 73.89 5991 33.80
& | D-Pruning [3] | 9479  72.12 | 73.74 61.66 35.64 | 9478 7883 | 7408 6128 37.09
Info-Batch [2] | 95.08 ~ 80.76 | 74.13 62.89 3757 | 9582 8156 | 7502 6321 39.21
| SCAN | 95.67 8136 | 7442 63.07 37.86 | 9593 8212 | 75.61 63.87 39.32
| CLIP | 91.65 7223 | 5552 43.00 2348 | 9329 77.06 | 61.73 48.84 30.40
& | Random 87.00  61.31 |49.97 36.07 2088 | 87.79  63.04 |50.12 38.09 2I.11
% | SemDeDup [1] | 8346  60.06 | 47.65 3551 17.61 | 8623  61.77 | 4920 37.10 19.11
5 | D-Pruning [3] | 8421 5873 | 46.57 3503 1695 | 8582  61.09 | 4799 3658 18.00
Info-Batch [2] | 89.30  70.02 | 50.51 39.58 19.78 | 91.02 6890 | 5349 40.69 20.71
| SCAN | 89.37 7105 | 5424 4130 22.65 | 91.88  74.86 | 59.90 46.90 27.90
| CLIP | 96.09 8139 | 6849 5519 29.06 | 96.66  84.35 | 71.53 5856 33.85
< | Random 93.62 7337 | 63.02 49.96 20.62 | 9490 7991 | 67.90 5410 2624
% | SemDeDup [1] | 9321 7385 | 6234 4940 2254 | 9400  77.01 | 6445 5140 2551
5 | D-Pruning [3] | 9328  73.09 | 61.67 4899 2248 | 9341 7543 | 6342 5077 2441
Info-Batch [2] | 9526  80.46 | 67.76 53.49 27.11 | 96.03  82.11 | 68.78 5578 29.59
| SCAN | 9531 80.00 | 67.04 5375 2741 9637 8271 | 7032 5717 31.89
| CLIP | 9436  77.84 | 5843 4579 2550 | 95.65 81.62 | 6340 5033 31.28
& | Random 90.05  69.26 | 5023 40.54 18.03 | 90.13  69.98 | 51.99 41.01 20.08
& | SemDeDup[I] | 9044 69.86 | 50.89 3815 19.89 | 90.77  70.00 | 51.19 39.80 2091
i5 | D-Pruning [3] | 90.06  69.08 | 50.04 37.87 19.11 | 90.07 69.65 | 51.23 37.99 2043
Info-Batch [2] | 93.54 7549 | 5698 44.03 2408 | - - - - -
| SCAN | 9400 7691 | 5672 44.12 2421 9505 81.21 | 61.96 4842 29.53
| CLIP | 9627 8274 | 70.87 5777 29.82 | 96.77  84.48 | 7237 59.07 33.24
< | Random 91.60  73.61 | 5059 4052 2172 | 9456  76.67 | 6757 5440 27.10
& | SemDeDup[I] | 94.16 ~ 7634 | 66.60 53.13 2560 | 9417 76,66 | 67.10 5339 27.11
i5 | D-Pruning [3] | 9348 7541 | 6590 52.69 2457 | 93.88 7599 | 6598 53.00 26.05
Info-Batch [2] | 96.10  81.06 | 70.30 56.10 2848 | 96.12 8178 | 71.34 5625 31.12

| SCAN

96.16  81.10 ‘69.55 56.48 28.76 ‘ 96.12  83.97 ‘71.82 5831 32.48
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Figure 2. More ill-matched samples obtained by our SCAN approach.



Table 6. Comparison of ViT-B/32 and ViT-B/16 using CLIP and
SCAN on CLIP-Benchmark.

| VIT-B/32 | ViT-B/16
Dataset

| CLIP  SCAN | CLIP SCAN
FER2013 18.50 2227 | 1836  20.77

ImageNet-O | 30.70 30.55 | 33.05 31.20
ImageNet-R 29.23 3191 | 31.08 29.67
ImageNetv2 20.19 21.80 | 21.39  20.90
ObjectNet 15.13 1393 | 14.84 15.03
rendered-sst2 | 50.08 4992 | 51.12 50.02
STL-10 85.18 86.06 | 85.11 85.04
SUN397 40.55 41.02 | 4195 41.29
VOC-2007 4722 4262 | 52.59 48.48
Caltech-101 64.93 68.56 | 65.63 65.46

Dmlab 20.02  11.81 | 17.77 16.19
DTD 15.66 1644 | 16.24 13.83
EuroSat 21.92  29.81 | 3420 29.67
Flowers 18.63 24.70 | 20.80 20.13
KITTI 3263 3277 | 3549 35.59
PCam 5033 52.23 | 50.32 52.69
Pet 31.28 43.06 | 3641 35.84
RESISC45 2341 23.05 | 21.28 19.38
SVHN 16.99 0697 | 09.73  07.86

Table 7. Performance comparison of RN50 and ViT-B/32 at dif-
ferent thresholds.

Threshold | RN50 | ViT-B/32
| Top-1  Top-5 | Top-1  Top-5
0.1 15.80 3521 | 1475 31.58
0.3 1691 3579 | 1648 33.60
0.5 1822 3779 | 16.04 33.19

0.7 1820 37.78 | 16.48 33.23




