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A. User Study

To further evaluate the perceptual quality of our results,
we conducted a user study comparing our method against
SMooDi [9]. The study involved expert participants, includ-
ing professional animators, motion researchers, and PhD
students in related fields. Each participant was shown a
series of motion pairs (over 200 in total), with each pair con-
sisting of outputs generated by our method and by SMooDi.
For each pair, the participant was asked to choose the ver-
sion they subjectively preferred based on motion plausibility,
smoothness, and overall quality. The results show that our
method was preferred in 79.8% of the comparisons, demon-
strating a significant perceptual advantage over the baseline.
This consistent preference underscores the effectiveness of
our method in producing high-quality stylized motions.

B. Efficiency Analysis

We compare the efficiency of our method with SMooDi [9]
in terms of learnable parameters and inference speed (sec-
onds per sample), under the same diffusion step setting. As
shown in Table 1, our model reduces the number of trainable
parameters by 43.9%, significantly easing training. While
the overall parameter count remains comparable, our single-
branch design boosts inference speed by 22.5%, outperform-
ing SMooDi’s structure. Notably, our style encoder is deeper
and thus accounts for most of the computational cost, but our
single-banch design allows for highly parallelizable opera-
tions. In contrast, SMooDi, which duplicates and separates
two pre-trained diffusion backbones for content and style,
requires output summation after each block, limiting parallel
efficiency despite fewer overall parameters. Consequently,
our method achieves faster practical inference and more
efficient training.

Method
Overall Learnable Inference

Parameter Parameter Time

SMooDi [9] 468M 13.9 M 4.0 s
StyleMotif 462 M 7.8 M 3.1 s
Improvement 1.3% 43.9% 22.5%

Table 1. Efficiency Comparison. For inference time, we report the
average time cost (s) per sample on a single NVIDIA A100 GPU.

C. Additional Implementation Details

C.1. Training Details

Our model is trained on a single NVIDIA A100 GPU for
50 epochs with a batch size of 64. We employ the AdamW
optimizer [5] with a constant learning rate of 1e-5. The
pre-trained generation network used is MLD [1]. Following
SMooDi [8], we randomly assign the content text to be
ϕ and mask out 10% of the style motion sequence along
the temporal dimension. During training, the number of
diffusion steps is set to 1000, which is reduced to 50 during
inference. Regarding the hyperparameters, we adopt γ = 0.6
for Eq. 5 and τ0 = 1.0 for Eq. 8 in the main paper. The
proposed style-content cross fusion is adopted only once
after the 4-th transformer encoder block of MLD, i.e. m = 4.
For the style encoder pre-training, we train for 200 epochs
on the 100STYLE dataset [6], starting from the pre-trained
encoder of MLD’s VAE. For multi-modal alignment, we
freeze the text encoder of ImageBind [2] and train only a
single linear projection layer using curated motion-text data
pairs for 200 epochs via contrastive learning.

C.2. Implementation Details of Generation Guid-
ance and Learning Scheme

We follow [8] to adopt the style guidance mechanisms and
the learning scheme. Here we provide a detailed description.

C.2.1. Style Guidance

We utilize both classifier-free and classifier-based style guid-
ance to balance content and style in the generated motion:
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Figure 8. Impact of Style Guidance Intensity Ratio τ in Eq. 10 for Motion-guided Stylization. Higher ratios improve style accuracy
while degrade content preservation.

Classifier-Free Guidance. We incorporate dual condi-
tioning for content and style. The denoising process is
guided by contrasting outputs with and without style input:

ϵθ(zt, t, τθ(c), ψθ(s)) = ϵθ(zt, t, ∅, ∅)
+ wc(ϵθ(zt, t, τθ(c), ∅)− ϵθ(zt, t, ∅, ∅))
+ ws(ϵθ(zt, t, τθ(c), ψθ(s))− ϵθ(zt, t, τθ(c), ∅)) (9)

where wc and ws control the strength of content-text align-
ment and style transfer, respectively. This decomposition
enables flexible control over the trade-off between content
fidelity and style adherence. Note that during diffusion train-
ing, we adopt the same wc and ws with [9].

Classifier-Based Guidance. To refine stylization, we
augment the diffusion process with gradient updates from
a pre-trained style feature extractor f [8]. The guidance is
computed as:

ϵθ ← ϵθ + τ∇zt∥F̂s −Fs∥2 (10)

where F̂s is the encoded style features of the decoded mo-
tion x̂0, from the predicted clean latent ẑ0, while Fs is the
input style features. τ modulates the intensity ratio of style
guidance. This approach ensures stronger alignment with
the reference style while maintaining motion realism. For
the style interpolation, we utilize the style motions retrieved
from the multi-modal features to calculate the classifier-
based gradient. Note that different from [9], we utilize L2

normalization when calculating the gradient.
The combination of these two guidance mechanisms offers
complementary benefits that the classifier-free term provides
a balanced trade-off between content and style, while the
classifier-based term enforces precise style fidelity.

C.2.2. Learning Scheme
The training process of our framework combines the follow-
ing objectives:

Standard Denoising Loss. The foundational loss ensures
accurate noise prediction during training:

Lstd = Eϵ,ψθ(s)[∥ϵθ(zt, t, τθ(c), ψθ(s))− ϵ∥
2] (11)

Content Prior Preservation Loss. To mitigate content-
forgetting, we follow [8] to include samples from Hu-
manML3D dataset [3] to preserve the model’s ability to
handle diverse motions:

Lpr = Eϵ′,ψθ(s)′ [∥ϵθ(z
′
t, t, τθ(c

′), ψθ(s)
′)− ϵ′∥2] (12)

Cycle Prior-preservation Loss. This loss encourages ro-
bust alignment of style and content across datasets by swap-
ping styles and contents between pairs of motion sequences:

Lcyc = E[∥ϵθ(zsht , t, τθ(c), ψθ(s)hs)
+ ϵθ(z

hs
t , t, τθ(c

′), ψθ(s)
sh)− ϵ− ϵ′∥2]

(13)

Here, zhs and zsh represent cross-dataset style-content com-
binations, ensuring the model does not overfit to a narrow
style distribution while maintaining content consistency.
The composite loss function is defined as:

Lall = Lstd + λprLpr + λcycLcyc (14)

where λpr and λcyc control the relative importance of content
preservation and cyclic consistency, respectively.

C.3. Implementation Details of Motion Style Trans-
fer

The motion style transfer task involves generating a stylized
motion sequence by combining a content motion sequence
and a style motion sequence. Although our model is trained
with text as the content input rather than motion, it can seam-
lessly support this task without requiring additional training.
Specifically, we utilize the DDIM reverse process [7] to de-
rive the noised latent code z̄T corresponding to the content
motion sequence, formulated as:

zt+1 =

√
αt+1

αt
zt +

(√
1

αt+1
− 1−

√
1
αt
− 1

)
· ϵθ(zt, t, τθ(c), ∅), (15)

where α represents the noise scale and t denotes time step.
The noised latent code z̄T can be obtained at the final reverse
step T , which substitutes original Gaussian noise and serves
as the input for the diffusion network. For this task, the
number of denoising steps is set to 30.



C.4. Dataset Details
The 100STYLE dataset [6] contains style labels that
may inherently convey content-related meanings, such as

“TwoFootJump,” which could conflict with content text like
“a person is running.” To mitigate such conflicts between
style labels and content text, we apply a filtering process
to the 100STYLE dataset during evaluation, following the
approach of SMooDi [9]. Specifically, we organize the style
labels in the 100STYLE dataset into six categories based on
[4]: character (CHAR), personality (PER), emotion (EMO),
action (ACT), objective (OBJ), and motivation (MOT). Since
the ACT group includes labels that describe specific actions,
which overlap with content-related information, we exclude
motions from this group when computing the SRA metric
for content text derived from the HumanML3D dataset. Ad-
ditionally, for multi-modal alignment, we refine the style
motions by retaining only motions with “forward” move-
ment and removing others. This selective filtering minimizes
noise and maintains the stability of the text-motion align-
ment space, facilitating more effective multi-modal motion
stylization.

D. Additional Ablation Study
Impact of Style Guidance Ratio. In Figure 8, we analyze
the effect of varying the style guidance ratio τ in Eq. 10 by
adjusting the style guidance weights. Our findings show that
increasing this ratio enhances the SRA metric but simulta-
neously degrades R-Precision, MM Dist, FID, and the foot
skate ratio. This trade-off suggests that higher style guidance
ratios improve style accuracy at the cost of content preserva-
tion. Notably, when the absolute value of the style guidance
ratio exceeds 2.3, the SRA improvement plateaus, while the
other metrics continue to deteriorate relatively more rapidly.
Based on these observations, we identify τ = 2.3 as the
optimal balance point for the style guidance ratio.
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