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6. Implementation Details
In the DGA module, the dynamic adjustment function in-
corporates two hyperparameters αp and αn, which are set to
0.5 and 0.9 in both quantitative and qualitative experiments.
Our approach constructs 3D scenes using sparse views, and
for the training phase of the dynamic aligning loss, we em-
ploy 500 iterations. For each scene, the entire workflow,
from pre-processing to global alignment reconstruction and
user-prompted 3D segmentation, runs on a single NVIDIA
RTX 3090 GPU in approximately 30 seconds.

7. Limitations and Further Direction
SAM2’s 2D segmentation has limitations in tracking small
targets and objects with similar appearances, and our
method consequently faces these challenges. To address
this, semantic embedding of point clouds in 3D may be
a future direction. Although we successfully integrate 3D
reconstruction and segmentation into a single pipeline, it
is not strictly end-to-end differentiable. Therefore, feed-
forward semantic reconstruction is also a topic worth ex-
ploring.

8. Experimental Details
8.1. More Qualitative Evaluation
We implemented real-time intuitive segmentation based on
mask cache, supporting user interaction for multi-round
segmentation. Furthermore, leveraging SAM2, we demon-
strate that users can add further interactions to refine the
segmentation mask. Visualization results based on the
LERF [18] dataset are shown in Figure 6.

To validate the effectiveness of our WildSeg3D, we con-
ducted visualization-based ablation studies on segmentation
tasks. As outlined in Sec. 4.4, DGA demonstrates its ability
to effectively reduce 3D alignment errors by mitigating the
influence of misaligned points and redundant background
information. This improvement significantly enhances the
clarity of object boundaries while minimizing artifacts such
as blurred details and background confusion. The effi-
ciency of DGA has previously been demonstrated. Further-
more, Figures 7, 8, 9, and 10 present visualization experi-
ments conducted on the NVOS [44], SPIn-NeRF [35], Mip-
NeRF360 [1], and T&T [20] datasets, respectively.

Without DGA, aligning pointmaps from multiple views
to a unified coordinate system is significantly affected by
the presence of redundant background points, which ad-
versely affect the global aligning accuracy. This issue be-
comes particularly pronounced in complex scenes. More-

Scene αp

-0.9 -0.5 0 0.5 0.9

fern 93.9% 93.9% 94.2% 94.2% 94.1%
flower 91.0% 91.1% 91.2% 91.1% 91.0%
fortress 97.8% 97.8% 97.7% 97.7% 97.6%

horns (left) 95.2% 95.1% 95.2% 95.2% 95.1%
horns (center) 94.1% 93.9% 93.5% 93.5% 93.2%

leaves 90.9% 91.3% 92.2% 94.0% 94.1%
orchids 89.4% 90.1% 90.0% 91.0% 90.6%

trex 39.7% 79.9% 84.5% 86.4% 86.3%

average 86.5% 91.6% 92.3% 92.9% 92.8%

Table 5. Ablation experiment on the NVOS dataset for the adjust-
ment factor αp.

Scene αn

-0.9 -0.5 0 0.5 0.9

fern 73.2% 75.3% 94.2% 94.0% 94.2%
flower 84.0% 40.4% 91.2% 89.4% 89.5%
fortress 98.2% 78.6% 97.7% 97.6% 97.7%

horns (left) 96.3% 96.4% 95.2% 95.1% 95.0%
horns (center) 35.5% 32.2% 93.5% 92.9% 93.0%

leaves 93.8% 66.8% 92.2% 96.3% 96.6%
orchids 92.3% 91.2% 90.0% 90.1% 90.3%

trex 82.0% 78.6% 84.5% 86.3% 86.4%

average 81.9% 69.9% 92.3% 92.7% 92.8%

Table 6. Ablation experiment on the NVOS dataset for the adjust-
ment factor αn.

over, directly using confidence scores as aligning weights
for 3D points across different views, which vary in match-
ing difficulty, can lead to the accumulation of 3D align-
ment errors. Notably, the incorporation of DGA enables
our method to accurately demarcate object boundaries while
suppressing the influence of background pixels and dynam-
ically adjusting aligning weights.

8.2. Evaluation on Adjustment Factor α

Tables 5 and 6 present the results of our ablation experi-
ments conducted on the NVOS dataset. For each scene, we
select five views as training views and use the mask seg-
mented by SAM2 from one reference view as the ground
truth for evaluation. With the Adjustment Factor α rang-
ing from [−1, 1], we project the 3D segmentation results
from all scenes onto the reference views and compute the
mIoU with their ground truth masks. The Adjustment Fac-
tor involves two hyperparameters, αp and αn, representing
matching and non-matching points, respectively. To eval-
uate the impact of each hyperparameter on segmentation
performance, we systematically investigate their individual
contributions. For example, to analyze the influence of αp,
we fix αn at 0, and vice versa. Among all values of αp and
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Figure 6. Visualization of mask cache and interactive segmentation on the LERF dataset. In each row, the segmentation masks in
the first column represent the stored masks in our mask cache. Each scene undergoes three interactive refinement steps, with three distinct
viewpoints displayed per prompt. Green and red points denote user-provided positive and negative prompts, respectively.

αn, the settings of αp = 0.5 and αn = 0.9 achieve the
optimal mean IoU of 92.9% and 92.8%, respectively.

9. Segmentation in the Wild
Our method demonstrates the capability of real-time seg-
mentation in arbitrary scenes. As shown in Figure 3, we per-

form segmentation on both indoor and outdoor scenes. No-
tably, the ”Eiffel Tower” and ”Big Ben” scenes are sourced
from outdoor aerial videos, where a selection of frames
is extracted and used as images for 3D segmentation. To
showcase WildSeg3D’s capability in segmenting arbitrary
objects, we evaluate it on additional scenes, as shown in



Figure 11. Our method achieves robust performance on di-
verse real-world scenes with highly sparse views, complet-
ing reconstruction and interactive segmentation within 10
seconds in unconstrained environments.
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Figure 7. Visualization of ablation experiment on the NVOS dataset. In each column, the images depicted in the top and bottom rows
illustrate the segmentation results without and with DGA, respectively. The second and third rows highlight zoomed-in views of the areas
within the red and green dashed boxes.
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Figure 8. Visualization of ablation experiment on the SPIn-NeRF dataset.
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Figure 9. Visualization of ablation experiment on the Mip-NeRF360 dataset.
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Figure 10. Visualization of ablation experiment on the T&T dataset.
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Figure 11. Visualization of WildSeg3D’s segmentation results on scenes in the wild with highly sparse views.
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