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Supplementary Material

In the supplemental material, we provide additional im-
plementation details, experimental results with ablation
studies, and qualitative results for video question answer-
ing and grounding.

1. Implementation Details

1.1. Training Details

The additional settings we use, including hyperparameters
and implementation details, are shown in Tab. 1. We train
on 8x A100 GPUs, and take 7 hours each for the instruction
tuning stages and 54 hours for the pretraining stage.

1.2. Multi-scale vision language connector

Our MS-VLC module consists of two RegNet [36] stages
along with a 3D convolution, as done in [5]. RegNet, or
regular networks, are convolutional network architectures
drawn from the regular design space identified by [36].
We take the architecture from [36], randomly initialize the
weights, and train the RegNet and the 3D convolution from
scratch over the training stages.

2. Additional experimental analysis

2.1. Multi-scale vision-language connector

In this section, we conduct ablations on the MS-VLC and
analyze the performance under various conditions. Specif-
ically, we evaluate the sparse-only and dense-only models
on different setups and report the effect of the multi-scale
connector on performance in these tasks.

Different question types Recall that the NExT-GQA [50]
dataset consists of different question types, which are
broadly classified into causal and temporal. In this section,
we evaluate the performance of the sparse-only and dense-
only connectors on the different question types. We observe
that MS-VLC performs the best across all types of questions
in the dataset, as shown in Tab. 2.

Different downsampling rate We sample 16 frames at
the dense scale, and 4 frames at the sparse scale - a (16, 4)
configuration. Thus, we use 4X downsampling from dense
to sparse. In this section, we try a 2X downsampling rate
- meaning we try a (16, 8) configuration. We observe that
(16, 8) configuration achieves an mIoU of 21.7 on NExT-
GQA, as compared to the mIoU of 24.4 achieved by the
(16, 4) configuration. We think that 2X downsampling is
not sufficient for the sparse branch, making it difficult to

Config Stage
Pretraining Instruction Tuning Consistemcy

Vision encoder clip-vit-large-patch14-336
Vision select layer -2
Language Decoder Mistral-7B-Instruct-v0.2

Optimizer AdamW
Weight Decay 0

Deepspeed Zero3
Epochs 1

Warmup Ratio 0.03
LR scheduler cosine

Decoder max length 2048
Starting LR 1e-3 2e-5
Batch size 256 128

Table 1. Additional hyperparameter settings and other implemen-
tation details are used in our framework.

Connector type
Question type

AllCausal Temporal
Why How Present Past Future

Sparse only 21.7 21.1 18 17.9 12.8 19.55
Dense only 21.8 22.2 18.8 18 13.6 20.12
MS-VLC 26.1 27.4 23.4 18 18.1 24.6

Table 2. Ablation on the MS-VLC on different question types
in the NExT-GQA dataset. We report Acc@GQA for the specific
question type. Recall that Acc@GQA considers the accuracy of
both the answer and the temporal grounding. ‘All’ considers all
the questions for calculating the metric.

GT Predictions
Mean centre position 49.9 50.1

Average length 21.6 21.5
% of timestamps starting at 0 14.40% 21.20%

% of timestamps ending at 100 10.10% 14.05%

Table 3. Statistics of the predicted and the ground truth (GT)
timestamps. All timestamps are normalized in the range [0, 100]
for this analysis. We notice that while the mean center position and
average length are similar for GT and predictions, the predictions
are more biased to start at 0 and end at 100 than the GT.

model long-term temporal relations due to the large amount
of information even at the sparse scale.

2.2. Novel open-Acc@GQA metric for NExT-GQA.

Recall that to compute the Acc@GQA metric for NExT-
GQA, the answer and the grounding both need to be eval-
uated simultaneously. The grounding is deemed ‘correct’
if the IoP > 0.5. The answer is ‘correct’ if the correct op-
tion is chosen among the five pre-determined options for
the question. An answer+grounding pair is correct for the
Acc@GQA metric if both conditions are satisfied.



Error type MS-VLC Dense Only Sparse only

Prediction mismatch %

Early start % 24.90% 29.48% 35.28%
Late start % 26.80% 22.69% 25.10%
Early end % 30.14% 37.08% 38.56%
Late end % 28.60% 24.08% 28.74%

Mean Absolute Error
MAE in start time 19.0 19.1 22.2
MAE in end time 21.3 22.4 25.6

MAE in centre 18.6 19.2 22.3

Table 4. Error analysis of the predictions compared to the ground truth (GT). The top half of the table is the percentage of predictions
starting/ending earlier/later than the GT. The margin is set to be 10% of the video length to be classified as early or late for this analysis.
The bottom half of this table reports the Mean Absolute Error (MAE) in the start/end/center times. All error analysis is performed for the
three different variations of the vision-language connector.

Method MSVD-QA ActivityNet-QA
Video-LLaMA2[5] 82 80
Video-LLaVA[26] 81 74

Ours 88 83

Table 5. Comparison with other methods on the open-ended QA
task, evaluated using Llama 3.1. The metric reported here is the
QA accuracy as judged by Llama. We observe that Llama is more
lenient than GPT in terms of evaluating responses. However, the
trend is similar and our approach outperforms other methods on
the open-ended video QA task.

However, our approach generated free-form answers in
an open-ended setup. To compute the Acc@GQA met-
ric and compare our method to other methods, we have
to ‘choose’ an option after generating open-ended answers.
Recall that we perform GPT-assisted retrieval for this, re-
trieving the most similar option to the open-ended answer
generated by our method.

In this section, we propose a new metric more suitable
for evaluating the open-ended nature of our approach, called
Open-Acc@GQA. This is based on the GPT-assisted open-
ended QA evaluation performed in other works [5, 26, 29].
Specifically, we query GPT to compare our response and
the ground truth answer, given the question. We ask GPT to
come up with a ‘yes’ or ‘no’ response to whether the pre-
diction is similar in meaning to the ground truth. Note that
as opposed to the GPT-assisted retrieval performed earlier,
the options are not passed to GPT.

We impose similar conditions on the Open-Acc@GQA
metric, as imposed by Acc@GQA. Specifically, the pre-
dictions are to be similar in meaning to the ground truth
(as described earlier), and the IoP of the grounding must
be > 0.5. In this way, Open-Acc@GQA becomes more
suited to evaluate the open-ended grounded video QA task.
We achieve 21.4% on the Open-Acc@GQA metric. Note
that we can not directly compare this to existing approaches
for grounded video QA since they do not generate open-
ended answers. It is interesting to compare this number to

the Acc@GQA metric, on which the same model achieves
24.6%. Open-Acc@GQA is a more difficult metric than
Acc@GQA due to the lack of options in the former.

2.3. Prediction statistics and error analysis

We report statistics of the predicted and ground truth times-
tamps in Tab. 3. We notice that the average length and
mean center position are similar for both, but predictions
are slightly biased toward the early start and late end.

We also perform some additional error analysis on the
predicted timestamps to get insights into where the model
is going wrong. We compute the percentage of times the
model makes an early/late prediction for start/end times.
We also compute the mean absolute error (MAE) in the
start, end, and center of the predicted timestamp compared
to the GT. This analysis is presented in Tab. 4. These obser-
vations entail that errors are mostly uniform in either direc-
tion for both start and end times.

2.4. Open-ended Llama-based evaluation

We have evaluated the open-ended video QA task using
GPT-assisted evaluation, to be consistent with previous
work [5, 26, 29]. However, GPT is a closed-source and is
expensive to use. Thus, to improve accessibility and repro-
ducibility, we also evaluate our approach using the open-
source pretrained LLM Llama 3.1. Similar to the GPT eval-
uation, we pass the question, prediction, and ground truth to
Llama. We ask it to come up with a ‘yes’ or ‘no’ response
to whether the prediction is similar to the ground truth an-
swer. The percentage of ‘yes’ responses is the accuracy of
the model. To compare with other approaches for open-
ended video QA, we also reproduce other approaches and
evaluate them using the same Llama-based evaluation.

As shown in Tab. 5, Llama is generally more lenient
in evaluation compared to GPT, since the numbers for all
methods are higher than the corresponding GPT-assisted
evaluation. Nonetheless, we observe a similar trend as the
GPT evaluation, and our approach outperforms others in
this evaluation.



2.5. Effect of chat template

Recall that we apply a chat template to every question be-
fore passing it to the model. In the template, we include
the desired output format, such as answer or answer
[<start>, <end>]. While evaluating on NExT-GQA,
we generate the answers and the grounding jointly, so we in-
clude the latter format in the queries in NExT-GQA. In this
section, we try an experiment where we do not apply any
template to the question. We observe that the model fails
to predict the grounding for any query in the NExT-GQA
test set. Thus, we conclude that the template is essential for
the model to generate temporal grounding along with the
answers.

2.6. Acc@QA metric

The Acc@GQA metric evaluates the grounding and QA
performance simultaneously. However, another metric
Acc@QA is also used in [50] to evaluate just the QA abil-
ity separately. For this, we discard the temporal groundings
in the generated answer and just evaluate the answers using
our GPT-assisted retrieval method. We achieve an accuracy
of 67.0%, which is close to the SOTA [57], which achieves
67.7%. Note that our model does not consider options while
generating the answer, as opposed to [57].

2.7. Frame numbers in prompt

Taking inspiration from [12, 30], we try to input the frame
indices between the visual features in the prompt, to see
if it further improves the grounding performance. How-
ever, we observe that this decreases performance - achiev-
ing a mIoU/mIoP of 21.2/36.4, respectively, as opposed to
24.4/40.5 of our best model. We observe that these ap-
proaches work with image-level features and interleave the
frame indices between features of individual frames. How-
ever, our multi-scale connector comprises 3D convolutions
that learn the correlations between frame features within the
connector itself. Hence, explicit frame indices are less im-
portant in the prompt, since the temporal information is al-
ready present in 3D convolutional features.

2.8. Effect of language decoder

We have used the Mistral-7B [16] language decoder in
our experiments. We also experimented with another pop-
ular decoder, namely Vicuna-7B. We find that using the
vicuna-7B language decoder in our approach achieves a
mIoU/mIoP of 19.0/33.9, respectively, which is lower than
our main model (24.4/40.5).

2.9. Traditional metrics for QA evaluation

Most of the Video QA works use GPT for evaluation [5, 26].
However, it may be seen as inconsistent over time due
to API version changes in the closed-source GPT model.
Hence, we also evaluate using open-source LLaMA in

Sec. 2.4. Further, we utilize the traditional METEOR metric
[21] for a more robust evaluation of our model. We achieve
a METEOR score of 0.498 on the ActivityNet-QA dataset.

2.10. Evaluation on additional datasets

We evaluate our approach on the ActivityNet-RTL test
dataset [12]. ActivityNet-RTL is another popular tempo-
ral reasoning and localization dataset involving temporal
grounding. It contains QA pairs which require reasoning
over complex events and actions. We perform the evaluation
in a zero-shot setting - we do not train on ActivityNet-RTL.
We obtain 22.9 mIOU and 18.2 P@0.5 on this dataset. We
compare it to LITA 7B model’s performance of 24.1 mIOU
and 21.2 P@0.5, but also note that LITA has been trained
on this dataset.

We additionally report results on the ReXTime [3] vali-
dation set in a zero-shot setting, without finetuning on ReX-
Time videos too. We get a mIoU of 27.4 and mIoP of 41.9
on the validation set of ReXTime.

3. Qualitative examples

We include additional qualitative examples for the NExT-
GQA dataset in Fig. 1 and the ActivityNet dataset in Fig. 2.
We include three questions for each video in Fig. 1. We can
observe that the model can detect events that happen in a
relatively short temporal window compared to the length of
the video. We can also observe that the predicted answers
may not exactly match the ground truth in both of these fig-
ures. This is due to the open-ended nature of our approach.

Even though ActivityNet is not a grounding dataset, we
still try to ground the questions in the dataset to observe the
performance. We show examples in Fig. 3. TOGA gener-
ates some groundings, but we can not evaluate the quality
without the ground truth annotations. Manually looking at
these samples, the predictions seem reasonable based on the
correlation between answers and the frames.



Figure 1. Additional qualitative examples from the NExT-GQA dataset, with longer videos and multiple questions per video. Compared
to the length of the video, the grounding evidence for the answer may be small. However, our model can capture events in small temporal
windows as well.



Figure 2. Additional qualitative examples from the ActivityNet dataset. Our model may generate words that are similar in meaning but not
the same as the ground truth, due to the open-ended nature of our approach.

Figure 3. Examples of grounding on ActivityNet videos. TOGA can perform grounding even on this dataset, but the questions may be
relevant to the whole video rather than a part of it.
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