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Figure 1. Ablation study on CarGait inference re-ranking factor
K, with SwinGait-3D model trained on Gait3D dataset. Rank-
1 (R1) and Rank-5 (R5) results are shown in blue (left-hand side)
and red (right-hand side), respectively. The dashed lines indicate
the initial single-stage model performance, while the solid lines
represent the results after CarGait re-ranking.

1. Hyperparameters

In the paper, we present an ablation study on the hyperpa-
rameters used in CarGait, K and v. Both are fixed across
all the experiments shown in the paper. The inference re-
ranking factor K, which is the length of the top-ranked list
on which re-ranking is performed during inference, is set to
10. The size of the candidate set in training, v, is set to 30.
Here, we present a detailed analysis on K and v, using the
SwinGait-3D model [3] trained on Gait3D dataset [11].

As shown in Fig. 1, CarGait improvements are consis-
tent across different values of K, with minor changes in R1
(higher for K = 5), and in R5 (higher for K = 10 and
K = 20). Figure 2 presents an ablation study on the top-
v candidates (per probe) used to construct the training set,
as illustrated in the paper (Method section). Compared to
the inference factor K, the performance variations here are
more pronounced. Nevertheless, for all values of v shown
(solid lines in Fig. 2), both Rank-1 and 5 accuracy consis-
tently surpass the initial state (dashed lines). As mentioned,
CarGait with v = 30 has been selected as a fixed hyperpa-
rameter for all models and datasets to ensure better gen-
eralization of our method. That is, even though, in some
cases, it might not be the optimal choice.

2. Runtime and Memory Analysis

We provide a detailed inference runtime analysis of CarGait
re-ranker across different K values in Fig. 3. Our method
involves a certain level of complexity. However, in prac-

Figure 2. Ablation study on CarGait training dataset creation v,
with SwinGait-3D model trained on Gait3D dataset. Rank-1
(R1) and Rank-5 (R5) results are shown in blue (left-hand side)
and red (right-hand side), respectively. The dashed lines indicate
the initial single-stage model performance, while the solid lines
represent the results after CarGait re-ranking.

tice, the inference overhead is only ∼6.5 [msec] on a single
A100 GPU with K = 101. As mentioned in the paper, the
re-ranker size is influenced by the feature map dimensions
obtained by the single-stage model. Generally, the num-
ber of trainable parameters varies from 2.07M to 9.21M. At
inference, the re-ranker has 0.4M parameters at most (com-
pared to the size of single-stage gait models that varies from
2.5M to 13M). Training the model on four A100 GPUs with
40 [GB] of RAM takes approximately 16 hours.

3. Experiments on GREW
In the paper (Evaluation section), we demonstrate CarGait’s
superiority over the existing re-ranking methods [8, 10, 12]
on the Gait3D [11] and OU-MVLP [9] datasets. Here,
we provide an additional comparison on the GREW [13]
dataset. As shown in Tab. 1, CarGait surpasses existing re-
rankers across all five methods in both Rank-1 and Rank-5
accuracy.

4. Additional Experiments
In Table 1 of the paper, we exclude results for settings where
checkpoints are unavailable. To enrich our evaluation, we
independently trained the SwinGait-3D model on two
datasets, using the official OpenGait implementation [4].
Although in GREW we were not able to reproduce the ex-
act paper results, we provide CarGait performance gains on

1For comparison, the first-stage global retrieval takes 0.1 [msec] per
probe.



R1 R5
Method Publication KR LBR GCR CG KR LBR GCR CG

GaitPart [2] CVPR 20 44.2 41.2 48.6 52.5 60.8 65.5 65.3 67.5
GaitSet [1] AAAI 19 44.7 41.2 48.6 52.0 62.6 65.5 65.3 68.0
GaitBase [5] CVPR 23 57.1 51.5 60.4 67.2 72.2 74.9 74.8 78.5
DGV2-P3D [3] ArXiv 23 74.6 64.3 77.4 79.2 86.2 86.5 87.6 88.7

SG++ [6] AAAI 24 84.2 80.4 86.0 88.2 93.0 93.4 93.0 94.6

Table 1. Rank-K accuracy [%] on GREW dataset [13] for different re-ranking methods: k-reciprocal (KR) [12], LBR [8], and GCR [10],
compared to CarGait (CG). Best results are in bold.

Figure 3. CarGait runtime analysis per probe with varying values
of K. The results were obtained on a single A100 GPU using
the SwinGait-3D model and the Gait3D dataset. The inference
time per probe [in msec] is shown in green (left-hand side), while
Rank-1 (R1) performance is depicted in blue (right-hand side).

both datasets (see Tab. 2).

GREW OU-MVLP
R1 R5 R1

Method Initial CG Initial CG Initial CG

SwinGait3D [3] 78.7 79.5 88.6 89.2 91.1 91.3

Table 2. Rank-K accuracy [%] on additional settings.

5. Verification

In our evaluation, we adopt Rank-K and mAP, which are
the standard metrics in gait recognition. Here, we highlight
the relevance of an important complementary metric: ver-
ification performance, measured by TPR@FPR. This met-
ric evaluates how reliably and securely a system can verify
identities under strict error restrictions, which may be a crit-
ical requirement in real-world scenarios.

To this end, we use the Gait3D dataset (which includes
multiple positives per probe), and the top K = 1000 single-

stage predictions, to calculate TPR@FPR=1e-2 - before and
after re-ranking. The results in Tab. 3 demonstrate consis-
tent gains achieved by CarGait.

Method Initial CG

GaitPart [2] 21.0 21.9
GaitGL [7] 21.9 27.5
GaitSet [1] 27.1 39.3
GaitBase [5] 52.9 59.5
DGV2-P3D [3] 65.3 67.4
SwinGait3D [3] 67.9 69.3

SG++ [6] 69.7 73.7

Table 3. CarGait enhancements in verification performance
(TPR@FPR=1e-2) on the Gait3D dataset [11] with K = 1000.

6. Ablations
Table 5 in the paper presents an ablation study using
the SwinGait-3D model trained on the Gait3D dataset.
Here, we extend this analysis with additional ablations fo-
cused on the cross-attention module. CarGait employs
a single cross-attention block with 8 heads. As shown
in Tab. 4, modifying the number of attention blocks or heads
results in only a minor effect on performance.

Method #Heads #Blocks R1 R5 mAP

Initial – – 75.0 86.7 66.69
H = 4 4 1 76.6 88.8 67.61

H = 16 16 1 76.2 89.2 67.84
B = 2 8 2 76.1 89.2 67.77
B = 4 8 4 76.3 88.8 67.65

CarGait 8 1 76.3 88.6 67.59

Table 4. Cross-attention ablations with SwinGait-3D model
and Gait3D dataset. Rank-1 (R1), Rank-5 (R5), and mAP are re-
ported.
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