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Supplementary Material

A. Appendix Overview

The appendix provides additional materials and detailed

analyses to support the findings and discussions presented

in the main paper. A summary of its contents is as follows:

* Evaluation Metrics (Sec. B): Detailed descriptions of the
evaluation metrics used in this work.

« Explanation Methods (Sec. C): Descriptions of explana-
tion methods included in the evaluation.

¢ SLOC Implementation Details (Sec. D): Precise imple-
mentation details of the SLOC method.

¢ Additional Quantitative and Qualitative Results
(Sec. E): Quantitative and qualitative comparisons of
SLOC and other state-of-the-art explanation methods on
additional model architectures across all benchmarks.

* Ablation Study (Sec. F): Comprehensive analyses of the
effects of varying design choices and hyperparameters in
the SLOC method.

¢ Computational Complexity (Sec. G): An analysis of the
computational complexity of SLOC.

* Runtime Comparison (Sec. H): A comparison of the
runtime of SLOC and other explanation methods.

* Notable Explanation Examples (Sec. [): Presentation
and discussion of several notable attribution maps pro-
duced by SLOC.

* Sanity Checks (Sec. J): Experimental validation of the
SLOC method using parameter and data randomization
sanity tests, as proposed in [3].

¢ Motivation Formalization (Sec. K): Formalization of
SLOC motivation introduced in Sec. 3.1.

¢ Additional Axioms (Sec. L): A discussion of additional
axioms, with an analysis of those satisfied by the SLOC
method.

¢ Limitations and Future Work (Sec. M): An exploration
of the limitations of SLOC, along with potential avenues
for future research.

B. Evaluation Metrics

There is no single measure or test set which is generally
acceptable for evaluating explanation maps. In this section,
we detail the evaluation metrics used in our experiments, in-
cluding faithfulness evaluation metrics, segmentation eval-
uation metrics, and the FunnyBirds evaluation metrics.

B.1. Faithfulness evaluation metrics

To ensure comparability, evaluations in this research follow
earlier works [26, 28, 49, 57] (but are not limited to them).
In general, the various tests entail different types of masking
of the original input according to the explanation maps and

investigating the change in the model’s prediction for the

masked input compared to its original prediction based on

the unmasked input. The difference in predictions refer to
the model’s original top-predicted class. A detailed descrip-

tion of the relevant experiments can be found in Sec. 4.1.
In what follows, we list and define the different evalua-

tion measures used in this research:

1. Perturbation tests entail a stepwise process in which pix-
els in the original image are gradually masked out ac-
cording to their relevance score obtained from the expla-
nation map [28]. At each step, an additional 5% of the
pixels are removed and the original image is gradually
blacked out. The performance of the explanation model
is assessed by measuring the area under the curve (AUC)
with respect to the model’s prediction on the masked im-
age compared to its prediction with respect to the origi-
nal (unmasked) image. We consider two types of mask-
ing:

(a) Positive perturbation (POS), in which we mask the
pixels in decreasing order, from the highest rele-
vance to the lowest, and expect to see a steep de-
crease in performance, indicating that the masked
pixels are important to the classification score.
Hence, for the POS perturbation test, lower values
indicate better performance.

(b) Negative perturbation (NEG), in which we mask
the pixels in increasing order, from lowest to high-
est. A good explanation would maintain the accu-
racy of the model while removing pixels that are
not related to the class of interest. Hence, for the
NEG perturbation test, lower values indicate better
performance.

(c) NEG-POS Difference (NPD) - (N EG—POS) cap-
tures the contrast between the complementary NEG
and POS metrics, with higher values indicating bet-
ter performance.

In both positive and negative perturbations, we measure
the area-under-the-curve (AUC), for erasing between
5%-95% of the pixels. As explained above, results are
reported with respect to the ‘predicted’ or the ‘target’
(ground-truth) class.

2. The deletion and insertion metrics [57] are described as
follows:

(a) The deletion (DEL) metric measures a decrease in
the probability of the class of interest as more and
more important pixels are removed, where the im-
portance of each pixel is obtained from the gener-
ated explanation map. A sharp drop and thus a low
area under the probability curve (as a function of the



fraction of removed pixels) means a good explana-
tion.

(b) In contrast, the insertion (INS) metric measures the
increase in probability as more and more important
pixels are revealed, with higher AUC indicative of
a better explanation.

(c¢) INS-DEL Difference (IDD) - (INS — DEL) cap-
tures the contrast between the complementary INS
and DEL metrics, with higher values indicating bet-
ter performance.

Note that there are several ways in which pixels can be
removed from an image [30]. In this work, we remove
pixels by setting their value to zero. Gradual removal or
introduction of pixels is performed in steps of 0.05 i.e.,
remove or introduce 5% of the pixels on each step).

3. The Accuracy Information Curve (AIC) and the Softmax
Information Curve (SIC) [49] metrics are both similar
in spirit to the receiver operating characteristics (ROC).
These measures are inspired by the Bokeh effect in pho-
tography [52], which consists of focusing on objects of
interest while keeping the rest of the image blurred. In
a similar fashion, we start with a completely blurred
image and gradually sharpen the image areas that are
deemed important by a given explanation method. Grad-
ually sharpening the image areas increases the informa-
tion content of the image. We then compare the explana-
tion methods by measuring the approximate image en-
tropy (e.g., compressed image size) and the model’s per-
formance (e.g., model accuracy).

(a) The AIC metric measures the accuracy of a model
as a function of the amount of information provided
to the explanation method. AIC is defined as the
AUC of the accuracy vs. information plot. The in-
formation provided to the method is quantified by
the fraction of input features that are considered
during the explanation process.

(b) The SIC metric measures the information content of
the output of a softmax classifier as a function of the
amount of information provided to the explanation
method. SIC is defined as the AUC of the entropy
vs. information plot. The entropy of the softmax
output is a measure of the uncertainty or random-
ness of the classifier’s predictions. The information
provided to the method is quantified by the fraction
of input features that are considered during the ex-
planation process.

B.2. FunnyBirds Evaluation Metrics

The FunnyBirds synthetic data generation process enables
intervention and inspection at the object part level rather
than at the pixel level. Each FunnyBird consists of five
distinct parts: beak, wings, feet, eyes, and tail. The Fun-
nyBirds evaluation protocol assesses explainability across

three aspects: Completeness, Correctness, and Contrastiv-

ity, and provides an overall score, which is the average of

these three aspects. The relevant experiments are described

in Sec. 4.1, [44].

We define the following notation:

* PI(-) — Part Importance Score: The total attribution
summed within a given part.

* P(-) — Set of Important Parts: The parts considered im-
portant, where a part is deemed important if its impor-
tance score constitutes at least t% of the total attribution.

* D — The FunnyBirds dataset, containing N images z,,
each associated with a class label c¢,,.

* f —The model under evaluation, where f(x,,) denotes the
logit for the target class, and f (x) denotes the predicted
class.

* e(zp) — The explanation generated for z,, with respect
to its target class c,.

Correctness (Cor.)

Measures the faithfulness of the explanation with respect to

the model.

* Single Deletion Protocol (SD):
Quantifies correctness by evaluating the correlation be-
tween Part Importance Scores and the change in logits
when individual parts are removed from the image.
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where !/ denotes the image obtained by removing a sin-

gle bird part from x,,. p denotes the Spearman rank-order
correlation coefficient.

Completeness (Com.)

Evaluates whether the explanation accounts for all relevant
factors influencing the model’s decision. The score is com-
puted as the mean of the averaged completeness metrics
(CSDC, PC, and DC), and the Distractability D.
* Controlled Synthetic Data Check (CSDC)
Tests whether the explanation highlights all relevant parts
required for classification:

N
1 > |P(ef(@n)) NP, il
CSDC = N P mecLX |Pén77“

where P, ; represents the minimal set of parts sufficient
for correctly classifying an image as c,,.

¢ Preservation Check (PC)
Quantifies whether preserving only the important parts
identified by the explanation maintains the model’s origi-
nal prediction:
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where z/, is the image obtained by removing all bird parts
except P(ef(zy,)).

¢ Deletion Check (DC)
Quantifies whether removing explanation identified im-
portant parts leads to a change in the model’s prediction:
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where ! is the image obtained by removing the identi-
fied important parts P(e(xzy,)).

* Distractability (D)
Ensures that explanations do not highlight irrelevant
parts:
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where 73}’ (2n) denotes the set of non-important parts.

Contrastivity (Con.)

Measures how well explanations distinguish between differ-
ent class outputs. Explanations for different classes should
highlight class-specific parts.

¢ Target Sensitivity Protocol (TS)

1 o= [PI(ef(@n,&1)) > PI'(ef (@, é2))] +
TS =+ Z " A " A
IN = [PI"(ef(xn, 1)) < PI"(ef(xn, é2))]
For each input, two classes ¢; and ¢, are chosen such that
they have exactly two non-overlapping common parts.
PI’, PI" denote the summed part importances of the two
parts belonging to classes ¢y, ¢5 respectively.

Accuracy and Background Independence

The FunnyBirds evaluation protocol reports, in addition to
the metrics, the model’s accuracy (Acc.) and background
independence (B.1.) with respect to the dataset. B.I. mea-
sures the model’s sensitivity to the entire image, computed
as the ratio of background objects such that, when removed,
the target logit decreases by less than 5%. Accuracy is rele-
vant because an overly simplified model may be explainable
but may not effectively solve the task at hand. For more de-
tails see [44].

B.3. Segmentation evaluation metrics

To quantitatively assess the alignment between the gener-
ated explanation maps and human-annotated GT segmenta-
tions, we employ the following standard segmentation met-
rics:

Mean Average Precision (mnAP) The mean Average Pre-
cision at a given Intersection over Union (IoU) threshold 7
is computed as:

mAP, =

1 N
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where AP’ is the average precision for the i-th sample, and
N is the total number of samples. The final mAP score is
obtained by averaging across multiple IoU thresholds.

Mean Intersection over Union (mloU) The IoU for a
given sample is defined as:
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where S is the predicted saliency region and G is the ground
truth segmentation mask. The mean IoU is then computed

as.:
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Pixel Accuracy (PA) Pixel accuracy measures the pro-
portion of correctly classified pixels and is given by:
N
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This metric quantifies the overall agreement between the
predicted and ground truth segmentations.
A detailed description of the relevant experiments can be
found in Sec. 4.1.

C. Explanation Methods

1. Grad-CAM (GC) [59] integrates the activation maps
from the last convolutional layer in the CNN by employ-
ing global average pooling on the gradients and utilizing
them as weights for the feature map channels.

2. Grad-CAM++ (GC++) [26] is an advanced variant of
Grad-CAM that utilizes a weighted average of the pixel-
wise gradients to generate the activation map weights.

3. Integrated Gradients (IG) [64] integrates over the inter-
polated image gradients.

4. Guided IG (GIG) [50] improves upon Integrated Gradi-
ents by introducing the idea of an adaptive path method.
By calculating integration along a different path than
Integrated Gradients, high gradient areas are avoided
which often leads to an overall reduction in irrelevant
attributions.

5. The FullGrad (FG) method [63] provides a complete
modeling approach of the gradient by also taking the
gradient with respect to the bias term, and not just with
respect to the input.



6. LayerCAM (LC) [48] utilizes both gradients and activa-
tions, but instead of using the Grad-CAM approach and
applying pooling on the gradients, it treats the gradients
as weights for the activations by assigning each location
in the activations with an appropriate gradient location.
The explanation map is computed with a location-wise
product of the positive gradients (after ReLU) with the
activations, and the map is then summed w.r.t. the acti-
vation channel, with a ReLU applied to the result.

7. Ablation-CAM (AC) [32] is an approach that only uses
the channels of the activations. It takes each activation
channel, masks it from the final map by zeroing out all
locations of this channel in the explanation map pro-
duced by all the channels, computes the score on the
masked explanation map (the map without the specific
channel), and this score is used to assign an importance
weight for every channel. At last, a weighted sum of the
channels produces the final explanation map.

8. The Transformer attribution (T-Attr) [28] method com-
putes the importance of each input token by analyzing
the attention weights assigned to it during self-attention.
Specifically, it computes the relevance score of each to-
ken as the sum of its attention weights across all layers
of the Transformer. The intuition behind this approach
is that tokens that receive more attention across differ-
ent layers are likely more important for the final pre-
diction. To obtain a more interpretable and localized
visualization of the importance scores, the authors also
propose a variant of the method called Layer-wise Rel-
evance Propagation (LRP), which recursively distributes
the relevance scores back to the input tokens based on
their contribution to the intermediate representations.

9. Generic Attention Explainability (GAE) [27] is a gener-
alization of T-Attr for explaining Bi-Modal transformers.

10. Deep Integrated Explanations (DIX) [14] is an advanced
version of Integrated Gradients which performs integra-
tion over intermediate network representations, instead
of input image.

11. RISE [57] creates perturbations by masking areas in
the image through upsampling of randomly drawn low-
resolution binary grids. The class score corresponding
to each masked version of the image serves as an im-
portance score for that specific mask. Finally, a linear
combination of all masks, weighted by their importance,
forms the final attribution map.

12. Meaningful Perturbation (MP) [39] employs gradient
descent to optimize a mask that, when applied to the
original image, generates a perturbation by occluding a
small yet critical region.

13. Extremal Perturbations (EP) [38] - under a given mask-
size constraint, EP employs gradient descent to optimize
a mask of the specified size that maximally enhances the
model’s output. By iterating over different mask sizes,

EP determines the smallest mask size capable of pushing
the model’s output beyond a predefined threshold.

14. Learning to Explain (LTX) [12] introduces a surrogate
“explainer’ model pretrained to mask as much of the in-
put as possible while preserving the original prediction,
thereby ensuring the retained features are those most rel-
evant to the model’s decision. Then, LTX finetunes the
attribution per specific example, while monitoring the
metric of interest, thereby allowing the selection of the
best-performing attribution w.r.t. to the metric at hand.

D. SLOC Implementation Details

This section details the implementation and hyperparame-
ter configuration used in our SLOC implementation. The
full implementation is available in our GitHub repository.
In Sec. F, we provide comprehensive ablation studies ana-
lyzing the impact of various SLOC hyperparameters.

Mask Generation Phase During this phase, a total of
| M| = 1000 masks were generated. Specifically, the masks
were generated by sampling entire regions corresponding
to square patches, rather than individual pixels. To this end,
we define a grid of patches of size L x L, which is suffi-
ciently large to encompass the entire image, even when the
grid is offset by up to L pixels in either direction along the
axes. The grid is then overlaid onto the image, ensuring
full coverage, and two offsets, denoted as b, and b, are
drawn independently from a discrete uniform distribution
over the set {0, ..., L — 1}. The grid is subsequently shifted
according to the sampled offsets, with b, and b, controlling
the shift along the x-axis and y-axis, respectively. For each
patch defined by the offset grid placement, a Bernoulli ran-
dom variable with a success probability of p is sampled, and
all pixels within the patch are set to the outcome (either O or
1). In our experiments, M consists of 500 sampled masks
with L = 32 and another 500 sampled masks with L = 56.

Tuning of p We consider two approaches for tuning the
probability parameter p. The first approach (used in SLOC)
tunes p per input and patch size by first sampling 50 masks
for each value of p in the range [0.2, 0.8] with increments of
0.05. For each value of p, we compute the variance of the
model’s prediction across the corresponding 50 masks and
select the value that yields the highest variance.

The motivation for selecting the probability that max-
imize the prediction variance is that an effective set of
masks should include a diverse spectrum of masks that en-
compasses (1) masks that preserve the original prediction,
thereby exposing important features accounting for the pre-
diction, and (2) masks that substantially reduce the predic-
tion score, indicating that essential information has been oc-
cluded. This contrast helps SLOC to better differentiate be-



tween the most and least important regions in the input.

The second approach (used in SLOC,,) tunes p globally
per model and patch size. Specifically, we perform a lin-
ear search to identify the value of p that achieves the best
performance according to the IDD metric, using a desig-
nated set of 1000 examples. The first approach (used in
SLOC) tunes p on a per-input basis by selecting the value
that maximizes the variance of the model’s prediction across
the sampled masks for that specific input. The second ap-
proach tunes p globally by selecting the value that maxi-
mizes performance on a chosen metric of interest over a set
of examples.

These two approaches represent an inherent trade-off:
per-input tuning introduces a modest runtime overhead dur-
ing inference, but it avoids optimizing for the IDD met-
ric, thereby being less biased toward improved faithfulness
scores. In contrast, per-model tuning requires access to a
representative dataset in order to optimize p with respect to
a specific metric. We also note that the per-model approach
could alternatively tune p to maximize prediction variance
globally over the representative dataset; however, we found
this strategy to be suboptimal in practice.

Optimization Phase The elements of the attribution map
a¥ were initialized by sampling from N(1,0.1)°. Then,
the optimization was performed using gradient descent on £
with respect to a¥ (Eq. 4), setting A\; = 0.1 and Ay = 0.01
for T' = 500 update steps. We employed the Adam opti-
mizer with a learning rate of v = 0.1, with learning rate de-
cay of 0.9 every 45 steps, momentum parameters 3; = 0.9
and B2 = 0.999, with no weight decay. It is worth not-
ing that in this work, the optimization employs gradient de-
scent rather than stochastic gradient descent. Specifically,
we perform a batch gradient update, considering the infor-
mation from all masks for a single update step, as appears in
Eq. 3. In the future, we plan to investigate the benefit from
stochastic updates, each time utilizing different subsets of
M. While this approach may lead to less accurate update
steps, it could potentially improve overall convergence due
to stochasticity.

E. Additional Quantitative and Qualitative Re-
sults

Tables 7 and 8 present quantitative comparisons of SLOC
with other state-of-the-art explanation methods across mul-
tiple faithfulness metrics on the IN dataset, using the RN
and ViT-B models, respectively. Results on the VOC

3This initialization was chosen for simplicity and has proven effective
in practice, despite being arbitrary. An alternative strategy could involve
setting the mean to the model’s response divided by the number of input
elements, along with a standard deviation that ensures predominantly pos-
itive values. However, such approaches remain unexplored and are left for
future work.

dataset, using the DN model, are reported in Tab. 9.
We observe that SLOC consistently emerges as the top-
performing method on average, with GIG, IG, and LTX as
the closest competitors, depending on the model, metric,
and dataset. The performance of the different SLOC vari-
ants is consistent with the trends observed in Tabs. 1-3. Fi-
nally, qualitative comparisons of SLOC and other methods
using the RN and ViT-B models are presented in Figs. 6
and 7.

Figures 8 and 9 illustrate the results of the FB evaluation
protocol for the RN and ViT-B models, respectively, with
Tables 10 and 11 presenting the corresponding numerical
results. The quantitative results plots follow the visualiza-
tion from [44] for consistency, depicting the three evalua-
tion aspects: Completeness (Com), Correctness (Cor), and
Contrastivity (Con). Additionally, they display Accuracy
(Acc) and Background Independence (B.I), which depend
on the model and dataset but are independent of the expla-
nation method, serving as sanity-check metrics. The over-
all score is shown at the center of each plot. Notably, The
FB Completeness (Com) metric differs from the definition
of completeness used in this paper; it evaluates the extent to
which an explanation accounts for all aspects of the model’s
decision, rather than whether the attributions sum to the
model’s response. A detailed description of the metrics is
provided in Sec. B.2.

The results indicate that SLOC achieves the highest over-
all score across both RN and ViT-B models, primarily due to
its strong performance in Correctness (a metric closely re-
lated to faithfulness), while maintaining competitive results
in the Completeness and Contrastivity metrics compared to
the best-performing methods in those categories (DIX, T-
ATTR, and IG).

Tables 12 and 13 present additional results for segmen-
tation tests on the IN-Seg dataset using the DN and ViT-S
models, respectively. We observe that DIX and T-ATTR are
the top-performing methods, while SLOC yields mediocre
to competitive results depending on the metric. It is impor-
tant to reiterate that segmentation performance may not al-
ways serve as a strong indicator of explanation quality [57],
but it does offer insights into how well the generated expla-
nations align with human-annotated ground-truth segmen-
tation maps. Higher segmentation accuracy may suggest
that a method excels at object detection rather than identi-
fying the most informative features driving the model’s pre-
diction. The most relevant features for explanation often do
not cover the entire object but instead represent a subset that
is critical to the model’s decision.

F. Ablation Study

We present extensive ablation studies investigating the sig-
nificance of the different loss terms in Eq. 4, and the hyper-
parameters of SLOC. The ablation studies are conducted on



Method  POS] NEGT DEL| INST NPDT IDDT AICT  SICT
SLOC, 1096 7584 868 64.19 6487 555 7944 78.13
SLOC 1065 6956 832 5833 5891 5001  78.5  77.04
SLOCy, 1074 6862 841 5741 5788 4901 7775 7678
AC 167 6696 12.76 5571 5026 4295 7717  74.59
DIX 1021 5833  7.83  48.16  48.11 4033 7115 6881
EP 149 6641 115 5451 5151 4301 7506  73.96
FG 1679 659 1294 549  49.11 4196 7416  71.54
GC 1637  68.04 1256 5665  51.67 441 7733 751

GC++ 16.81  66.85 12.85 5554  50.04 4268 7682  74.54
GIG 94 4528  7.68 3771 3589 3003 5752 5451
IG 9.9 4422 776 3714 3432 2938 5656  54.23
LC 1704 6658 130 5525  49.54 4225 7646 7433
LTX 1498  69.88 117 5774 5491 4603 7669  74.29
MP 17.16 5081  13.6 4134 3365 2774 6471  62.52
RISE 158 623 1204 5193 465 3989 7731 7477

Table 7. Faithfulness results for all combinations of method and metric, using the RN model on the IN dataset.

Method  POS| NEGT DEL] INST NPDf IDDT  AICT  SICT
SLOC,, 21.54 89.01 1493 63.05 6748 4812 8542 81.82
SLOC 2239 8572 157  59.85 6273 4371  84.82  81.86
SLOC,, 2236 8510 1556 5927 6298 4388 8474  81.58
DIX 3209 7701  21.14 5117 4492 3003 7988 74.92
EP 4124 8295 2518 5899 4172 3381 8159  77.32
GAE 33.16 7688 2195 5112 4372 29.17  79.02  74.6

LTX 283 8074 188 5552 5244 3672  79.65  74.98
MP 36.63 7849 2383  52.82 4187 2899  80.58  76.11
RISE 497 7742 327 5009 2772 174 7665  72.16
TATTR 328 7724 2149 5156 4444 3007  80.04  74.79

Table 8. Faithfulness results for all combinations of method and metric, using the ViT-B model on the IN dataset.

the ViT-S model.

Loss terms Table 14 presents the effect of ablating on
different terms in £ (Eq. 4) to faithfulness performance:
SLOC,1; and SLOC,ty are versions that ablate on the L1
term and TV term by setting A\; = 0 and Ao = 0, respec-
tively. SLOCipixTy is a version that simply set £ to L.
(Eq. 2) which is equivalent to setting both A\; = 0 and
A2 = 0. Finally, SLOC is our method. Tables 15 and 16
summarize the faithfulness results for various values of \;
and \g.

The results in Tables 14—16 indicate that both regular-
ization terms, TV and L1, introduce trade-offs across the
explanation metrics. For example, L1 regularization with-
out TV (SLOCrvy) outperforms SLOC across all metrics
except for AIC and SIC. In contrast, applying TV without
L1 (SLOCyr1) leads to degradations in NEG and INS (and
the corresponding summary metrics), while the remaining
metrics remain largely unaffected. Finally, when no regu-
larization is applied at all (SLOCyyixTv), We observe im-
provements in POS and DEL but significant degradations in
NEG, INS, AIC, and SIC.

These results suggest that both regularization terms yield
mixed effects on faithfulness metrics, highlighting no con-
sistent trend. However, faithfulness is only one aspect of

explanation quality. Therefore, in Tables 17 and 18, we
further examine segmentation performance across varying
values of \; and Ao, respectively. In this case, we observe
that applying TV and L1 leads to marginal improvements in
segmentation performance. This aligns with the observation
that the regularization terms contribute to more focused and
visually ’clean’ explanations from a human perspective.

Patch size . Table 19 presents a comparative analysis of
different settings of the patch size L. The results indicate
that increasing the patch size consistently improves perfor-
mance on the NEG, INS, AIC, and SIC metrics, while lead-
ing to a degradation in the POS and DEL metrics beyond a
patch size of L = 32. This observation suggests that differ-
ent metrics may benefit from different patch size settings.
Therefore, in our experiments, we consider a combination
of two sets of masks—one generated with a patch size of
32 and another with 56—as this configuration achieves bal-
anced improvements across all metrics, yields the best val-
ues for the NPD and IDD summary metrics, and delivers
state-of-the-art performance.

Number of sampled masks |M| Table 20 presents a
comparison between different choices of |M|. Notably, we
observe that beginning from |M| = 1000 SLOC exhibits



Method POS| NEGt DEL| INST NPDt IDD{ AICT SICT
SLOC,, 624 61.32 419 4515 55.09 40.96 68.6 71.89
SLOC 6.19 534 4.05  39.01 47.2 3497  65.63 70.92
SLOC,, 640 5261 4.08 3811 4574 3404 66.65 70.58

AC 10.06  50.15 6.4 33.85 40.09 2745 6146  65.05
DIX 8.2 4389 519 2931 35.7 2412 58.67 61.64
EP 9.08 49.12 591 33.1 40.04  27.19 63.7 65.53
FG 942 2799 636 1943 1857  13.07 36.75 39.37
GC 9.85 51.83 624 3489 4199 28.64 63.16 65.68
GC++ 10.11 4943 6.5 33.03 3931 2654 6142 64.15
GIG 6.47  30.37 43 21.46 239 17.16  41.59  44.56
1G 773 3088 509 2156 2315 1647 4159 4276
LC 10.14 4929 652 3294  39.15 2642 6125 6439
LTX 898 5484 592 3693 4586 31.01 6137 65.11

RISE 9.38  43.75 6.02  30.78 3438 2476 6199 64.67

Table 9. Faithfulness results for all combinations of method and metric, using the DN model on the VOC dataset.

SLOC AC DIX EP GC LTX RISE

Figure 6. Qualitative comparison of attributions produced by different methods, using the RN model w.r.t. the classes (top to bottom):
’white stork’, *speed boat’, *viaduct’, *black and gold garden spider’.

Method  Completenesst CorrectnessT  Contrastivity? — Overallf Method  Completenesst CorrectnessT  Contrastivity? — OverallT
SLOC 0.85 0.60 0.87 0.78 SLOC 091 0.77 0.96 0.88
SLOC,, 0.86 0.61 0.85 0.77 SLOC,, 0.92 0.77 0.90 0.86
AC 0.73 0.56 0.80 0.70 DIX 0.9 0.76 0.97 0.87
DIX 0.74 0.55 0.87 0.72 EP 0.89 0.76 0.71 0.79
EP 0.82 0.57 0.8 0.73 RISE 0.78 0.79 0.75 0.77
FG 0.75 0.56 0.78 0.69 T-Attr 09 0.74 0.95 0.87
GC 0.74 0.55 0.86 0.72

GC++ 0.74 0.55 0.87 0.72 Table 11. FunnyBirds evaluation results for the ViT-B model.
GIG 0.65 0.54 0.49 0.56

1G 0.86 0.55 0.49 0.63

LC 0.74 0.55 0.86 0.72

RISE 0.70 0.56 0.61 0.62

Table 10. FunnyBirds evaluation results for the RN model.

|M| = 1000 (comprising 500 masks with a patch size of

32 and another 500 with a patch size of 56) is sufficient to
commendable performance. Although larger values of | M| achieve state-of-the-art performance while maintaining rel-
may offer potential improvements, our findings suggest that atively fast runtimes.



SLOC DIX EP GAE LTX RISE T-Attr

“spotlight’, ’swab’, ’snail’, ’American coot’.

SLOC SLOCyp AC DIX
B.l. B.l. B.l. B.I.
Com. 1.0 Com. 1.0 Com. 1.0 Com.
Acc. Acc. Acc. Acc.
Cor. Cor. Cor. Cor.
Con. Con. Con. Con.
EP FG GC GC++
B.I. B.I. B.I. B.I.
Com. 1.0 Com. 1.0 Com. 1.0 Com.
Acc. Acc. Acc. Acc.
Cor. Cor. Cor. Cor.
Con. Con. Con. Con.
GIG IG LC RISE
B.l. B.l. B.I. B.l.
Com 1.0 Com 1.0 Com. 1.0 Com. 1.0
Acc. Acc. Acc. Acc.
Cor. Cor. Cor. Cor.
Con. Con. Con. Con

Figure 8. FunnyBirds evaluation results for model RN. See Sec. B.2 for metric descriptions.
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Figure 9. FunnyBirds evaluation results for model ViT-B. See Sec. B.2 for metric descriptions.

Method SLOC AC DIX EP FG GC GC++ GIG IG LC LTX RISE
mloU?T 0.55 056 0.64 051 045 055 056 049 047 056 056 050
mAP?T 079 086 087 077 0.76 0.86 087 0.77 077 087 0.85 0.79
PAT 0.75 0.73 0.80 072 066 073 074 072 069 0.74 074 0.69
Table 12. Segmentation results for the DN model.
Method SLOC DIX EP GAE LIX MP RISE TAwr A2 POS| NEGT DEL] INST NPD{ IDDf AICT SICT
mloUT 052 0.63 050 061 056 055 050 068 00 1333 7816 11.0 6744 6483 5644 8091 79.53
mAPT 076 081 076 079 0.81 074 0.75 0.83 0.01 1433 7927 11.85 68.63 6494 56.78 8256 81.17
PAT 072 079 071 078 072 074 0.68 0.82 0.1 1534 7778 1259 66.78 6244 54.18 836 81.92
. . 0.2 15.84 78.0 1297 66.57 62.16 53.6 8351 81.84
Table 13. Segmentation results for the ViT-S model. 05 1674 7838 13.69 66.69 61.64 5299 83.67 82.44
POS] NEGT DEL] INST NFDT IDDT AT SICT 1.0 177 7893 1437 6695 6124 5258 840 8236
SLOCy1v 1333 7816 11.0 6744 6483 5644 8091 7953 ) ) )
SLOCy 1526 7684 1254 6583 6158 5329 84.11 82.15 Table 16. Faithfulness evaluation. Ablation study on A2 - the co-
SLOC,ixtv 13.89  73.60 11.35 6295 59.70 51.60 77.80 76.28 efficient of the TV regularization term in Eq 4.
SLOC 1535 77.87 1259 66.76 62.52 5417 83.87 822

Table 14. Faithfulness evaluation. Ablation study on the regular-
ization terms in Eq. 4.

N POS] NEGT DEL] INST NPDT IDD{ AICT SICT
00 1526 7684 1254 6583 6158 5329 8411 82.15
001 1535 77.87 1259 6676 6252 5417 8387 822

005 1545 7756 12.65 67.18 62.11 5453 835 81.74
0.1 1565 7726 127 6671 61.61 5401 8304 815

025 1571 7634 1273 6609 60.63 5336 82.33 81.29
05 1598 7498 13.04 6485 590 5181 809 80.88
1.0 1751 697 1408 60.19 5219 46.11 77.81 7821

Table 15. Faithfulness evaluation. Ablation study on A; - the co-
efficient of the L1 regularization term in Eq. 4.

Probability p (Bernoulli parameter) for activating mask
Table 21 presents a comparison of different
choices for the parameter p, which determines the prob-

patches

A1 0 001 005 0.1 025 05 0.1
mloUT 052 055 055 054 052 049 043
mAPT 079 081 0.81 081 0.79 0.76 0.71
PAT 071 074 075 074 072 0.70 0.64

Table 17. Segmentation evaluation. Ablation study on A; - the
coefficient of the L1 regularization term in Eq. 4, using the RN
model.

ability of setting a mask patch to 1. Notably, the
last row (SLOC)—corresponding to tuning p per in-
put—outperforms all fixed probability values across all
metrics except for p = 0.3. We note that the optimal fixed p
varies across different models (this ablation was conducted
on the ViT-S model), highlighting an inherent trade-off in
the choice between tuning p per input (SLOC) or per model



A2 0 001 01 02 05 0.1
mloUT 0.54 054 055 055 055 0.55
mAPT 08 08 08 0.81 0.81 0.82
PAT 073 073 0.74 074 0.74 0.74

Table 18. Segmentation evaluation. Ablation study on A2 - the
coefficient of the TV regularization term in Eq. 4, using the RN
model.

L  POS| NEGT DEL] INST NPD{ IDD{ AICT SICT

8 1642 7402 1354 6352 576 4998 7942 7731
16 15.18 75.82 1244 65.15 60.64 5271 81.66 80.33
32 1486 76.55 1231 6545 61.69 53.14 83.04 80.88
40 15.67 76.67 1284 6552 61.0 52.68 83.08 81.01
48 16.43 7739 1335 65.87 6095 5253 8323 81.25
56 17.01 77.49 1386 6591 60.48 52.05 82.89 80.98
64 17.69 77.68 1449 6575 5999 5126 8248 8l.1

SLOC 157 7738 1283 66.1 61.68 53.26 83.19 81.36

Table 19. Faithfulness performance across different patch size set-
tings.

[M[ POS] NEGT DEL] INS{ NPD{ IDD{ AICT SICT

10 3291 6032 2663 49.16 2741 2253 6926 66.88
100 1976 70.18 1615 5829 5042 4214 7797 7548
250 17.17 7396 1409 6243 5679 4835 8043 7847
500 1636 76.16 1325 6451 598 5126 8244 80.65
750 1595 7724 1293 6562 613 527 8291 81.23
1000 157 7738 12.83 66.1 6168 5326 83.19 81.36
1250 1565 7755 1279 6633 619 5354 8353 81.64
1500 15.54 78.06 1277 667 6252 5393 8325 81.66
2000 1551 7825 1268 6695 6274 5427 83.66 82.03

Table 20. Faithfulness performance for varying numbers of drawn
masks.

p  POS| NEGT DEL| INST NPD{ IDDT AICT SICT
0.1 1835 7628 1467 6486 5793 502 8153 79.85
02 1654 7776 1335 6633 6121 5298 8275 81.17
03 1573 7821 1280 6682 6249 5402 8336 81.56
04 161 7775 1333 6652 61.65 53.19 825 80.96
05 1739 7611 1477 6515 5871 5038 81.83 79.62
06 1956 7438 1681 63.16 5482 4635 80.1 77.79
07 2314 7145 1974 6005 4831 4031 78.02 75.1
0.8 2607 6794 2235 56.68 41.87 3433 7573 7263
09 3124 6515 2657 5388 3391 2731 7246 69.19

SLOC 1535 77.87 1259 6676 6252 54.17 83.87 82.20

Table 21. Faithfulness performance for varying patch probability.

(SLOC,p): in SLOC, p is being tuned during inference (for
the specific input), while in SLOC,,,, access to a representa-
tive dataset is required to tune p in advance for each model.

Number of gradient update steps 7' Table 22 reports the
results for varying numbers of update steps (iterations) in
the SLOC optimization process. We observe that the op-
timal number of iterations varies across metrics. While
POS and DEL favor higher values of 7', the best results
for NEG and INS are obtained between 50—100 iterations,
and the summary metrics favor 75 iterations. Since faith-

T POS| NEGT DEL] INST NPD] IDDT AICT SICT

25 20.12 7585 1641 63.68 5573 4727 80.1 77.64
50 17.03 79.86 13.75 6847 6283 5472 8326 81.77
75 17.19 8026 1399 689 63.07 549 839 827
100 17.24 802 1412 688 6295 54.68 8421 82.54
200 16.52  79.1 13.54 67.86 6257 5432 8341 8244
250 16.19 78776 1328 67.59 6257 5431 8371 82.26
500 1534 77.86 1259 66.8 6252 5421 8343 82.11
750 1488 7746 1226 6636 6258 54.11 83.82 81.97
1000 14.69 7737 1209 66.19 62.67 54.1 83.01 82.1

Table 22. Faithfulness performance for varying numbers of gradi-
ent update steps (iterations).

fulness metrics provide only a partial assessment of expla-
nation quality, we found that setting 7' = 500 offers the
best balance across all benchmarks (faithfulness, segmenta-
tion, FB) and produces satisfactory attributions from a hu-
man perspective.

Empirically, a higher number of iterations results in
lower DEL and POS scores, which in turn lead to more fo-
cused and compact attributions. This can be explained by
the fact that low AUC values in the DEL and POS metrics
are encouraged by a sharp drop in the metric curves, caused
by masking a relatively small percentage of elements in the
image that correspond to the most influential features (as-
suming the explanation method indeed highlight the most
influential ones). This indicates that the attribution concen-
trates on a small, compact region—often perceived as more
meaningful and interpretable from a human perspective.

SLOC attributions aggregation vs. single-run approach
Due to the inherent stochasticity in SLOC, arising from both
mask sampling and the optimization process, different runs
of SLOC on the same input may yield different attribution
maps. This motivates two lines of investigation: (1) we
examine the effect of aggregating IV attribution maps pro-
duced by N independent runs of SLOC into a single, com-
bined attribution map; and (2) since N runs of SLOC effec-
tively involve sampling a total of N| M| masks, we study
the behavior of SLOC when using N|M| masks in a sin-
gle run, as the alternative of aggregating N independently
generated attribution maps.

We consider four aggregation methods: mean, median,
minimum, and product. The results for each method are
summarized in Tabs. 23, 24, 25, and 26, respectively. Over-
all, we observe that median and minimum aggregations im-
prove faithfulness results, followed by mean aggregation,
which provides slight to negligible improvement. Prod-
uct aggregation does not yield any gain and even results in
slight degradations in some metrics. We note that for prod-
uct aggregation, we apply ReLU to each attribution map be-
fore computing the product to avoid sign issues, as SLOC
can produce negative attributions. Given this choice, we
believe the degradation is due to the zeroing of all negative



values, combined with the fact that product aggregation is
equivalent to an intersection operation, which may be too
aggressive.

A demonstration of the resulting attribution maps from
the four different aggregation methods across varying val-
ues of N appears in the first four rows of Fig. 10. For
N = 1, the attribution map is identical for all methods,
as no aggregation is applied. As the number of attributions
N increases, we observe a artifact reduction effect across
all aggregation methods. Arguably, minimum aggregation
produces the ‘cleanest’ attribution while still highlighting
most of the influential features related to the prediction. Vi-
sually, mean and median aggregations produce similar at-
tribution maps, with slightly less artifacts in the median ag-
gregation. Product aggregation, while producing very clean
attributions, fails to capture the significant regions and fea-
tures of the object associated with the predicted classes.

Table 27 summarizes the results of the alternative ap-
proach: applying a single run of SLOC with N|M| sam-
pled masks (for different values of V), allowing for a fair
comparison to the aggregation methods. We observe im-
provements across all faithfulness metrics as N, and conse-
quently the number of sampled masks, increases. However,
this improvement plateaus for the majority of metrics start-
ing from N > 2.

When comparing the single-run approach to the aggrega-
tion methods, we observe a slight improvement in POS and
DEL compared to the leading aggregation methods (mini-
mum and median). For AIC and SIC, the performance is
comparable, while for the remaining metrics, the leading
aggregation methods produce better results than the single-
run approach.

The last row in Fig. 10 (the ’base’ row) presents the re-
sulting attributions for the single-run approach across vary-
ing values of V. Similar to the aggregation methods, we ob-
serve an artifact reduction effect as NV increases. Arguably,
the single-run method with N = 10 best highlights the im-
portant features in the image from a human perspective,
while producing fewer artifacts than median aggregation.
Minimum aggregation, while generating the least amount
of artifacts, presents less coherent highlighting of the object
compared to the single-run method.

Overall, we conclude that minimum and median aggre-
gation methods show potential to improve both faithfulness
results and visual quality. However, a comparable improve-
ment can also be achieved by simply increasing the number
of sampled masks in a single run of SLOC.

G. Computational Complexity

The computational complexity of SLOC is determined by
the number of gradient update steps 7' and the number of
forwards passes through the model which corresponds to
the number of sampled masks, |M|. In our implementa-

N POS| NEGt DEL] INStT NPD{ IDD{ AICT SICT
1 15779 7749 1295 66.16 61.7 5322 8321 81.19
2 1535 78.05 1259 66.64 627 5405 835 8196
3 154 78.13 1252 66.74 6274 5422 8374 8241
4 1534 78.03 125  66.77 62.69 5426 83.75 82.19
5 154 78.12 1249 66.88 62.72 5439 83.58 82.18
6 1541 7818 1252 6687 6277 5435 84.08 8231
7 1537 7822 1248 6685 6285 5437 8384 822
8 1546 7824 1248 6688 62.77 544 8403 8226
9 1541 7838 1247 6691 6297 5444 8377 8245
10 154 7844 1245 6694 63.05 5449 8396 82.6

Table 23. Evaluating the effect of combining N generated attribu-
tions by mean aggregation to produce the final attribution map.

N POS| NEGT DEL] INST NPDT IDD{ AICT SICT
1 1579 7749 1295 66.16 617 5322 8277 8136
2 154 7876 12.68 6751 6336 54.83 83.58 81.68
3 1542 7973 1268 6851 6431 5583 83.61 81.96
4 1527 80.13 1266 6884 6486 56.18 83.75 82.17
5 1539 8024 12,66 69.18 64.86 5652 83.67 82.53
6 1541 8042 1268 6941 6502 5673 83.84 8237
7 1548 805 12,69 69.66 65.02 5696 83.63 82.27
8 1535 80.84 12.66 69.68 6549 57.02 84.34 82.38
9 1558 80.84 1275 69.87 6526 57.12 8411 8255
10 1536 807 1274 69.82 6534 57.08 839 8274

Table 24. Evaluating the effect of combining N generated attribu-
tions by median aggregation to produce the final attribution map.

N POS| NEG{ DEL| INST NPD{ IDD{ AICT SICt
1 15779 7749 1295 66.16 61.7 5322 82.62 81.57
2 154 7876 12.68 67.51 6336 5483 83.09 81.6
3 1548 79.06 1257 679 6357 5534 83.19 81.61
4 1538 79.07 12.58 68.04 63.69 5546 83.34 81.81
5 1537 79.08 1253 68.14 63.72 556 8341 81.74
6 153  79.19 1247 6826 63.89 558 835 8193
7 1527 792 1249 68.19 6393 557 83.1 81.88
8 1543 7921 1251 6824 63.78 5573 83.28 81.89
9 1529 79.28 12.5 68.4 64.0 559 83.63 81.99
10 1529 79.65 1249 6851 6436 56.02 8298 82.11

Table 25. Evaluating the effect of combining /N generated attri-
butions by minimum aggregation to produce the final attribution
map.

N POS| NEGT DEL] INST NPDT IDD{ AICT SICT
1 1579 7749 1295 66.16 617 5322 8275 81.23
2 1548 7724 12,67 6575 6176 53.07 83.12 81.89
3 153 7701 1258 6548 6171 529 833 81.62
4 1535 7677 1259 6527 6143 5267 83.16 81.56
5 1538 7686 126 6522 6147 52.61 8281 81.67
6 1558 7686 1267 6502 6128 5235 8331 81.59
7 1567 7687 1272 6488 612 5216 8273 81.36
8 1567 7646 1272 6462 60.79 519 825 8134
9 157 7663 1275 6463 6093 51.88 82.63 813l
10 158 7616 1274 6448 6037 5173 8276 8091

Table 26. Evaluating the effect of combining /N generated attri-
butions by multiplying them element-wise to produce the final
attribution map.

tion, we use the same set of masks throughout the entire
optimization process. This allows for precomputation of
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Figure 10. Aggregation of N attribution maps produced by independent runs of SLOC using different aggregation methods (mean, median,
minimum, and product), compared to a single run of SLOC with N| M| masks.

N POS| NEG! DEL|] INST NPD{ IDD{ AICT SICT
1 1538 7754 1274 66.16 62.16 5342 8348 8118
2 1516 7773 1251 6671 6257 542 83.58 81.99
3 151 783 1253 67.11 6321 5457 8406 82.0
4 1515 7825 1242 67.2 63.1 547 8354 8222
5 1513 780 1237 6723 6287 5486 8394 8236
6 1517 78.18 1243 673 6301 5487 83.83 8234
7 1517 7811 1242 67.15 6294 5473 84.13 82.29
8 1515 7822 1238 6732 63.07 5494 8392 82.49
9 1529 7841 1238 6733 63.13 5495 84.03 8246
10 1511 7824 1233 6731 63.13 5498 83.89 826

Table 27. Single-run experiment. Each row reports faithfulness
results obtained by SLOC using N | M | sampled masks for varying
values of IV (to match the total number of masks used across IV
attributions in the aggregation experiments).

the model’s response r(x™) once, which is then reused in
subsequent optimization steps. Specifically, before the op-
timization begins, each masked version of the input x™ is
passed through the model once, and the corresponding set
of model responses, {r(x™)}men. is stored. Additionally,
for each mask, we precompute and store |m| which is re-
quired for normalizing the completeness gap, as shown in
Eq. 2.

Subsequently, the optimization proceeds through a se-
ries of gradient updates, each relying on a sequence of
lightweight tensor arithmetic operations as outlined in
Eq. 3. Importantly, during the optimization process, both
r(x™) and |m| are fixed, precomputed values that remain
constant across all gradient updates. The only term that

changes with each update is the attribution map a¥, which
is refined iteratively in each step.

As aresult, at least in theory, SLOC optimization is more
efficient than other optimization-based attribution meth-
ods [12, 39] that require both forward and backward passes
(due to gradient backpropagation through the model) at
each update step, leading to higher computational costs
per update. Additionally, SLOC can become computation-
ally lighter than path integration methods, if the number
of interpolations in the integral approximation is equiva-
lent to the number of masks drawn in SLOC. This is be-
cause each interpolation step in the path integration requires
a forward-backward pass for gradient computation, whereas
each mask in SLOC only requires a forward pass. In Sec. H,
we present runtime comparisons demonstrating that SLOC
achieves faster runtimes relative to other explanation meth-
ods.

It is important to note that the computation for each mask
is independent, hence embarrassingly parallel. As long
as the computational resources support accommodating the
batch of masks in GPU memory, including the propagation
of the perturbed (masked) inputs through the model, the gra-
dients for all sub-maps can be computed in parallel via a
single forward pass. Accordingly, the precomputation of
the model responses for all perturbed inputs is also embar-
rassingly parallel and can be efficiently achieved in a single
pass through the model using GPU parallelization.



SLOC SLOC,, DIX

EP GAE LTX MP RISE T-Attr

Runtime (seconds)  6.79 3.43 04

1325 0.03 7.1 4.05 0O.11 1.02

Table 28. Runtime comparison between SLOC and other attribution methods using the ViT-S model.

H. Runtime Comparison

We evaluated the runtime efficiency of SLOC in compari-
son to other explanation methods by running each method
on the same random subset of 100 examples from the IN
dataset using the ViT-S model. The resulting runtimes
are presented in Tab. 28. We observe that SLOC variants
demonstrate competitive to superior runtime performance
relative to other perturbation- and optimization-based meth-
ods. However, alternative approaches such as DIX, T-Attr,
and GAE run faster than SLOC. Notably, SLOC,, offers
improved runtime efficiency over SLOC, at the cost of
slightly reduced performance on the FB benchmark. As ex-
plained in Sec. G, SLOC benefits from independent mask
generation, enabling parallel processing on a GPU, which
reduces computation time. Furthermore, SLOC requires
fewer masks than other perturbation-based methods. For
instance, RISE [57] reports using between 4,000 and 8,000
masks.

While SLOC’s optimization phase is sequential, it avoids
model evaluation or backpropagation - a step required by
other optimization-based methods such as MP, EP, and
LTX. This is since the model’s response r(x™) in Eq. 4 is
precomputed and remains fixed throughout the optimization
process. This design ensures that the runtime of SLOC’s op-
timization phase is unaffected by the size or complexity of
the model.

Finally, it is worth noting that explanations, unlike pre-
dictions, are often used for debugging and auditing pur-
poses, where the added computation time for a more ac-
curate and informative explanation is generally regarded as
a worthwhile trade-off.

I. Notable Explanation Examples

In this section, we present several case studies of attribu-
tion maps generated by SLOC, highlighting its effectiveness
across diverse input settings. Additionally, we demonstrate
the limitations of optimizing for global vs. local complete-
ness.

Multi-instance settings Figure 11 presents a synthetic
image featuring two identical instances of the ’indigo-
bunting’ bird, on the left and right halves of the image. This
image yields a response of 0.9999 for the ’indigo-bunting’
class for the complete image, by the RN model. When
masking out the right half, preserving only the left bird, or
masking out the left half preserving only the right half, the

Figure 11. Two copies of the same object are shown (left) along
with the corresponding attribution map generated by the SLOC
method. The image yields a very high (above 0.99) model re-
sponse for the ‘indigo-bunting’ class by the ViT-S model. How-
ever, when the image is masked to preserve only one of the copies,
the response remains very high. Therefore, when considering the
three corresponding masks—one preserving the entire image, one
preserving the right half, and one preserving the left half—no at-
tribution map can satisty local completeness for all three corre-
sponding sub-maps. Despite these potential ‘collisions’, the SLOC
method produces an attribution map that effectively captures both
copies.

Figure 12. A synthetic multi-class image featuring the classes
indigo-bunting and goldfinch. The SLOC attribution map for ViT-
S prediction of the goldfinch class shows negative attributions
(dark blue) on the indigo-bunting’s body, as its presence decreases
the predicted probability for the goldfinch class.

model response remains very high: 0.9992 or 0.9955, re-
spectively. Thus, across the three regions: the complete im-
age, the right half, and the left half — no attribution map
can fully satisfy local completeness for all corresponding
sub-maps. Yet, the SLOC-generated attribution highlights
both copies of the bird. This example demonstrates that the
soft nature of SLOC enables the generation of high-quality
attributions even in cases where local completeness is in-
herently infeasible.

Multi-class settings Figure 12 presents a synthetic im-
age created by combining two images (from IN): one of
class ‘indigo-bunting’ (left) and one of class ‘goldfinch’
(right). This results in an image composed of two distinct



Figure 13. A multi-class image from the VOC dataset with RN
SLOC attribution maps for the classes dog (center) and person
(right).

regions, each corresponding to a different class. The figure
presents the SLOC attribution for the ViT-S prediction of
the ‘goldfinch’ class. Notably, the attributions in the dark-
blue area containing the indigo-bunting body are negative,
indicating that the presence of the indigo-bunting reduces
the predicted probability for the ‘goldfinch’ class.

Figure 13 shows an image from the VOC dataset, where
the top predicted classes by the RN model are dog and per-
son. The sub-figures present the corresponding SLOC attri-
bution maps for dog (center) and person (right), providing
further empirical evidence of SLOC’s ability to highlight
the relevant features that contribute to the prediction of each
individual class.

Global vs. Local Completeness Optimization Figure 14
compares attribution maps generated for the RN model and
the ‘jellyfish’ class using SLOC, which minimizes com-
pleteness gaps locally over a set of sub-maps (Eq. 4), against
those obtained by minimizing the completeness gap glob-
ally over the entire attribution map. The latter approach,
referred to as the global completeness loss, is defined as
(r(x)[y] — >, a¥[i])%. Subfigures (a) show the attribu-
tion map produced by SLOC (top) and its overlay on the
input image (bottom). Subfigures (b) present the attribution
map obtained by minimizing the global completeness loss
(top) and its overlay on the input (bottom). Subfigures (c)
display the attribution map generated by minimizing global
completeness with an additional total variation (TV) regu-
larization term (top) and its overlay (bottom). Although the
attribution maps in (b) and (c) satisfy global completeness,
they fail to provide faithful explanations. The attribution
map in (b) is dominated by noise, while the one in (c) is in-
fluenced by artifacts induced by TV regularization applied
to random initialization. This example highlights the limi-
tations of global completeness as a sole optimization objec-
tive. In contrast, SLOC, by promoting local completeness,
produces faithful attribution maps.

J. Sanity Checks

In order to further evaluate the soundness and validity of
SLOC, we conducted both the parameter randomization

Figure 14. Attribution maps produced for the RN model for class
‘jellyfish’. (a) attribution map produced by SLOC. (b) attribution
map obtained by minimizing the global-completeness-loss aiming
to satisfy global-completeness. (c) attribution map obtained by
minimizing global-completeness with an additional TV regular-
ization term. The top row displays the attribution maps, while the
bottom row displays the attribution maps overlaid on the image.
Although global-completeness is satisfied by the attribution maps
in (b) and (c), it is insufficient for producing a faithful explanation.

and data randomization sanity tests as proposed by [3].

The experiments utilize the ImageNet ILSVRC 2012 val-
idation set [31] with the VGG-16 [61] model and SLOC.

J.1. Parameter Randomization Test

The parameter randomization test compares the explanation
maps produced by the explanation method based on two se-
tups of the same model architecture: (1) trained - the model
is trained on the dataset (e.g., a pretrained VGG-16 model
that was trained on ImageNet), and (2) random - the same
model architecture, with random weights (e.g., a randomly
initialized VGG-16 model). For an explanation method that
relies on the actual model to be explained, we anticipate
significant differences in the explanation maps produced
for the trained model and those produced for the random
model. Conversely, if the explanation maps are similar, we
conclude that the explanation method is insensitive to the
model’s parameters, and thus may not be useful for explain-
ing the model’s prediction. It is worth noting that parameter
randomization sanity checks were found inadequate as a cri-
terion for ranking attribution methods, due to the observed
performance gap between faithfulness metrics and random-
ization tests [23]. Nevertheless, we report these results for
the sake of completeness.

Given a trained model, we consider two types of parame-
ter randomization tests: The first test randomly re-initializes
all weights of the model in a cascading manner (layer af-
ter layer). The second test independently randomizes one
layer at a time, while keeping all other layers fixed. In both
cases, we compare the resulting explanations obtained by
using the model with random weights to those derived from
the original weights of the model.



J.1.1. Cascading Randomization

The cascading randomization method involves the random-
ization of a model’s weights, starting from the top layer and
successively moving down to the bottom layer. This pro-
cess leads to the randomization of the weights from the top
to the bottom layers. Figure 15 presents the Spearman cor-
relation between the original explanation map obtained by
SLOC and the original (pretrained) model and the explana-
tion map obtained by SLOC and each of the cascade ran-
domization versions of the original model. The markers on
the x-axis are between ‘0’ and ‘16°, where x = k means
that the weights of the last &k layers of the model are ran-
domized. At x = 0 there is no randomization, hence the
correlation with the original model is perfect. Starting from
x = 1 (marked by the horizontal dashed line) and up to
x = 16, the graph depicts a progressive cascade randomiza-
tion of the original model. We observe that randomizing the
weights starting from the top layer reduces the correlation
with the explanation map of the original model to nearly
zero. This behavior showcases the sensitivity of SLOC to
the model’s parameters - an expected and desired property
for any explanation method [3].

Figure 16 displays a representative example of explana-
tion maps (bottom) and their overlay to the original image
(top), illustrating the cascading randomization process. The
first column presents explanation maps produced by SLOC
and the original model, while the rest of the columns present
explanation maps produced by SLOC and cascading ran-
domized models, where the number 7 above each column
indicates that the explanation map is produced by a model
in which the weights of the last 7 layers were randomized.
It is evident that the quality of produced explanation maps
significantly degrades as more and more layers are set with
random weights.

J.1.2. Independent Randomization

We further consider another version of the model’s param-
eters randomization test, in which a layer-by-layer random-
ization is employed, one layer at a time. In this test, we
aim to isolate the influence of the randomization of each
layer, hence randomization is applied to one layer’s weights
at a time, while all other layers’ weights are kept identical
to their values in the original model. This randomization
methodology enables comprehensive evaluation of the sen-
sitivity of the explanation maps w.r.t. each of the model’s
layers.

Figure 15 presents results for the independent random-
ization tests. At z = 0 no randomization was applied and
the correlation to the original model is perfect. For z = ¢
(¢ > 0) the graph indicates the correlation of the original
model with a model in which only the weights of the i-th
penultimate layer were randomized while the weights of all
other layers were kept untouched. We observe that the cor-

Layer Parameter Randomization

T
101 ® i —8— Cascading randomization

i Independent layer randomization
0.8 1 |
[ =4 1
o !
ki :
[ |
S 0.6 i
o |
¥ ;
2 :
é 0.4 i
© |
9 i
=3 1
(%3] 1
0.2 !
|
i

0.0 00— 00— —0—0—3

0 2 4 6 8 10 12 14 16

Layer index (from top)

Figure 15. VGG-16 Layer Parameter Randomization: This fig-
ure illustrates two types of layer randomization types: Orange
(Independent Layer Randomization) shows the randomization
process applied independently to each layer of the model, while
the remaining weights are kept fixed at their original values. Blue
(Cascading Randomization) depicts the sequential randomiza-
tion of layer weights, starting from the last layer and progress-
ing towards a selected layer. The x-axis represents the layer in-
dex, which, for cascading randomization, also corresponds to the
number of layers being randomized. The y-axis shows the av-
eraged Spearman rank correlation between the explanation maps
produced by SLOC using the original model and the model with
randomized weights. The first data point at x = 0 corresponds to
no randomization (the original model), where the correlation be-
tween the explanation maps is 1.0. The dashed line indicates the
point where randomization begins. We observe that randomizing
even a single layer in either approach reduces the average corre-
lation to nearly zero. This is a desired outcome, confirming that
SLOC passes the sanity check. For further details see Secs. J.1.1
and J.1.2.

relation values are effectively zero across all layers which
indicates SLOC’s sensitivity to weight randomization in
each layer separately. This property is a desired property
for an explanation method, as it indicates the method’s sen-
sitivity to each of the model’s layers, independently. Fi-
nally, Fig. 17 presents a qualitative example in the same
fashion as Fig. 16, this time for the independent randomiza-
tion test. We observe that the quality of all explanation maps
produced by a randomized version of the model differs sig-
nificantly from the original explanation map. We conclude
that SLOC successfully passes both types of parameter ran-
domization tests.

J.2. Data Randomization Test

The data randomization sanity test is a method used to as-
sess whether an explanation method is sensitive to the label-
ing of the data used for training the model. This is done by
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Figure 16. Cascading Randomization on VGG-16 (ImageNet): The figure presents the original explanations (first column) for the
‘Christmas stocking’ class. The progression from left to right illustrates the gradual randomization of network weights up to the layer
number indicated at the top of each column, starting from the last layer. The second row displays the resulting saliency maps, while the
first row shows the saliency maps overlaid on the original image. We observe that randomizing even just the top layer significantly disrupts
the explanation. This behavior is desired, as it demonstrates that SLOC passes the sanity check. For further details, see Sec. J.1.1.
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Figure 17. Independent Randomization on VGG-16 (ImageNet): Similar to Figure 16, this example randomizes each specific layer
independently, while the remaining weights are retained at their original values. We observe that randomizing any single layer significantly

disrupts the produced explanation, confirming that SLOC passes the sanity check.
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Figure 18. Parameter and Data Randomization Tests: Spear-
man rank correlation box plots for SLOC with the VGG-16 model.

comparing the explanation maps produced by the explana-
tion method for two models with identical architecture that
were trained on two different datasets: one with the origi-
nal labels and another with randomly permuted labels. If
the explanation method is sensitive to the labeling of the
dataset, we would expect the produced explanation maps to
differ significantly between the two cases. However, if the
method is insensitive to the permuted labels, it indicates that
it does not depend on the relationship between instances and
labels that exists in the original data. To conduct the data
randomization test, we permute the training labels in the

Parameter Data

Original image Explanation Randomization Randomization

Figure 19. Sanity Checks: Rows 1 and 2 present the SLOC results
for the parameter randomization and data randomization tests on
images of the classes “jellyfish” and “American alligator”, respec-
tively. From left to right: the original image, the explanation map
produced by SLOC with the trained model, the explanation map
produced by SLOC with the untrained model (where the model’s
weights are randomly initialized without further training), and the
explanation map produced by SLOC with a model trained on ran-
dom labels.

dataset and train the model to achieve a training set accuracy
greater than 95%. Note that the resulting model’s test accu-
racy is never better than randomly guessing a label. We then
compute explanations on the same test inputs for both the
model trained on true labels and the model trained on ran-
domly permuted labels. Figure 18 presents two box plots,
one computed for the Spearman correlation values obtained
for the parameter randomization test (cascading version),
and another for the data randomization test. We can see that
the correlation values are very low indicating SLOC’s sen-



sitivity to both parameter randomization and data random-
ization. Specifically, we conclude that SLOC successfully
passes the data randomization test.

Finally, Fig. 19 presents additional qualitative examples
for both tests. The first row shows two explanation maps
produced by SLOC w.rt. the “jellyfish” class. We see
that when SLOC utilizes an ImageNet pretrained VGG-16
model, it produces a focused explanation map (around the
cat), but when applying SLOC to the same model with ran-
dom weights, or to the model trained with random-labels,
it fails to detect the jellyfish in the image. The second row
shows a similar example for class “American alligator”.

K. Motivation Formalization

In this section, we formalize the motivation for SLOC as
outlined in 3.1. Notably, the following setting and its as-
sumptions are simplified and do not reflect real-world con-
ditions; they serve solely to illustrate the underlying motiva-
tion. Importantly, SLOC does not necessitate these assump-
tions in practice and its effectiveness is rigorously validated
through extensive experiments.

Overview

Our setting involves an image x with an object of interest
that drives the model’s prediction of class y. We demon-
strate that by enforcing local-completeness across a set of
sub-maps, we can derive an attribution map that highlights
a compact region containing the object of interest, thereby
ensuring faithfulness.
The set of sub-maps is represented by corresponding bi-
nary masks M. For a given attribution map a¥ and binary
mask my;, their dot product a¥ - m; yields the sum of attribu-
tions in the corresponding sub-map. We define r(xom,)[y]
as the model response for class y on the masked image.
Local-completeness is satisfied for the sub-map correspond-
ing to m; when these two terms are equal.
Our framework operates under the following simplifying
assumptions:
¢ The mask set M comprises only masks that either com-
pletely preserve or completely remove the object of inter-
est.

* When the object is preserved, the model response equals
R; otherwise, the response is 0.

* The set of masks includes a mask that preserves the entire
image.

An ideal attribution would precisely highlight the object
of interest. Consider the intersection region defined by the
element-wise product of all masks that preserve the object,
along with the complement of all masks that delete the ob-
ject. This intersection region necessarily contains the ob-
ject of interest. Furthermore, as the number of sub-maps
increases, the salient regions become more precisely de-
fined, potentially converging toward the ideal attribution in

our setting.

Now consider an attribution map that assigns a total attri-
bution of R within this intersection area and zero values out-
side it. This attribution satisfies local-completeness for all
sub-masks corresponding to masks in M. For masks pre-
serving the object, the corresponding sub-map contains the
intersection, yielding an attribution sum of R. For masks re-
moving the object, the mask and intersection are mutually
exclusive, yielding an attribution sum of 0.

Moreover, we prove that any attribution obtained by en-
forcing local completeness for all corresponding sub-maps
and ensuring all attribution values are non-negative can have
positive values only within the intersection region. We
prove this by contradiction. Assume there exists a pixel
outside the intersection region for which the attribution is
positive. For such a pixel outside the intersection, one of
two cases must hold:

1. There exists a preserving mask that does not include this
pixel, or

2. There exists a deleting mask that does include this pixel.

(Otherwise that pixel is in the intersection region).

In the first case, consider the mask that preserves the en-
tire image. The attribution sum for this mask equals R by
local-completeness. However, the attribution map contains
both the contributions from the sub-map corresponding to
the preserving mask (which sums to R) and the positive at-
tribution of the pixel outside the intersection. This would
make the total attribution sum strictly greater than R, vio-
lating local-completeness for the full-image mask — a con-
tradiction.

In the second case, for a deleting mask that includes the
pixel with positive attribution, the sum of attributions within
this mask would be greater than zero. However, since this is
a deleting mask, local-completeness requires the attribution
sum to be zero—another contradiction.

Therefore, a non-negative attribution map satisfying
local-completeness must assign zero attribution to all pix-
els outside the intersection region, with a total sum of R
inside this region.

It’s worth noting that our formulation imposes no con-
straints on the distribution of attribution within the intersec-
tion region. In the absence of additional information, dis-
tributing attribution uniformly is a reasonable choice. This
insight motivates the incorporation of Total Variation Loss
in the SLOC optimization framework, which naturally pro-
motes spatial coherence in the attribution map.

Lemma:

Let x € R™ be an image, and let p be a set of pixels that
constitute an object of interest in the image, belonging to
class y. Let r(-)[y] denote the model response for class y,
and let m,, € {0,1}" denote a binary mask that defines the
set of pixels p. Let M C {0, 1}" be a set of N binary masks



such that:

L. M=M;UMy

22.m;om, = m, Ar(xomy)ly] = R, Vm; €
Mg Mg = {my,..,mg} - masks that completely
preserve p.

3.mjom, = 0, Ar(xomj)y = 0, Vm; €
Mg, Mg = {mgyq1,...,my} - masks that com-
pletely delete p.

4, m; =1, € M, - We denote m; as the mask that pre-
serves the entire image.

where o denotes the element-wise product, and 0,, and 1,,
represent vectors of length n with all elements equal to 0
and 1, respectively.

Let a¥ be an attribution map such that:

ay my;=R, a’o(l—-m;)=0, (10)

where:

m;=mjo---omyo(l—mgpy)o---o(l—my) (11)

m; represents the intersection of the masks that preserve
p with the inversion of the masks that delete p. In other
words, the total attribution within m; sums to R, with all
attributions outside m; being zero.

Then:

1. Completeness is satisfied for all sub-maps induced by

M.

aj -m; =r(xomy)y], Vm; e M

2. Uniqueness of m; as the maximal subregion with
nonzero attribution: Consider any non-negative attri-
bution b¥ that satisfies completeness for all sub-maps
(ie.,b?-m; = r(xom;)[y], Ym; € Mandb¥ > 0,).
Then we have:

(1—m1)ob:y,:0n

x

This implies that bY has non-zero attribution only
within the region defined by m;.
Proof:

Part 1: Completeness for all sub-maps

For masks m; € M,:

n

ay -m; =Y allu] - my[u] (12)

u=1
= > allu mifu]+ D alfu]-mifyl
my[u]=1 m; [u]=0

(13)
= > alful-miful+ > 0-myul
my[u]=1 my[u]=0

14
= > alfu]-my[y] (15)
my[u]=1
— 3 afu]-myfu) (16)
my[u]=1
=a’ -m;= 17)
=R =r(xom;)[y] (18)

Transition (14) follows from (10). Since a%[u] - (1 —
myu]) =0forallu € 1,...,n, it follows that if m;[u] =
0, then a¥[u] = 0. Transition (16) follows from the defini-
tion of my, if my[u] = 1, then for any m; € M, we have
m;[u] = 1 as well, hence my[u] = m;[u]. Transition (18)
follows directly from (10).

For masks m; € Mg:

a¥ -m; = Z a¥[u] - m;[u) (19)
u=1

my[u]=1 my[u]=0
(20)
= > a0+ ) alfu]-myy
my[u]=1 my[u]=0
2D
= alful -0+ Y 0-m;lu] (22
my[u]=1 my[u]=0
=0=r xomj)[y] (23)

Transition (21) follows from the definition of m; in (11),
which implies that if m;[u] = 1, then m;[u] = 0. Simi-
larly, transition (22) follows from (10): since a¥[u] - (1 —
m;[u]) = 0, it follows that if m;[u] = 0, then a¥[u] = 0.
Part 2: Nonzero attribution only within the intersection
Given that:

by >0, (24)

and
b -m; = r(xom,)[y], Vm; € M (25)

we proceed by contradiction.



Suppose there exists v € {1,...,n} such that:
mj;[v] =0AbYv] >0 (26)

By the definition of m; (11), there are two possible cases:
1. There exists a mask m, € M, such that m,[v] = 0, or
2. There exists a mask m, € M, such that m,[v] = 1.
Case 1: If there exists a mask m, € M such that my[v] =
0, then:

by m; =) bl[y] 27)
u=1
= > bYul+) b+ Y bYy
mg[u|=1 U=v uFvAmg[u]=0
(28)
> > biul+ > bl (29)
mg[u]=1 u=v
=b¥ - m, + b¥[v] (30)
= r(xomyg)[y] + bi[v]+ GD
= R + b¥[v] (32)
>R (33)
=r(xomi)ly] =b¥ -m; (34)

which is a contradiction. Transition (29) follows directly
from the nonnegativity of b¥ (24). Transition (31) follows
from b¥ satisfying local completeness (25). Transition (32)
follows since m,; € M. Transition (33) follows from the
positivity of b¥[v] (26)

Case 2: If there exists a mask m, € M, such that m[v] =
1, then:

by my =) byfu] - my[u (35)
u=1

> bY[u] - my[v] (36)

=bl[v] -1 37

>0 (38)

=r(xomyg)[y] = b} -m, (39)

which is a contradiction as well. Transition (36) follows
from the nonnegativity of b¥ (24). Transition (38) follows
from the positivity of b¥[v] (26). O

L. Additional Axioms

We have demonstrated how SLOC harnesses the concept of
completeness locally as a guiding principle to produce high-
quality explanations. We now extend this discussion to in-
clude additional axioms relevant to attributions and attribu-
tion methods. By axioms, we refer to the desired properties
of either the method or the explanation.

Sundararajan et al. [65] discuss the following addi-
tional axioms: Sensitivity, Implementation Invariance,
and Linearity. Erion et al. [36] extend this discussion by
introducing the Smoothness and Sparsity as additional ax-
iomatic attribution priors.

Two definitions are provided for Sensitivity: (a) For ev-
ery input and baseline that differ in one feature but have dif-
ferent predictions, the differing feature must receive a non-
zero attribution. (b) If the model output does not depend on
an input, the attribution for that input must always be zero.

The Implementation Invariance axiom is satisfied when
attributions remain identical for functionally equivalent net-
works. Two networks are considered functionally equiva-
lent if their outputs are identical for all inputs.

The Linearity axiom is satisfied if, when two models are
composed linearly to form a third model,

f3(x) ==a- fi(x) +b- f2(x),

the attribution of the composed model is the weighted sum
of the attributions for f; and fo, with weights a and b, re-
spectively.

The Smoothness and Sparsity priors are not binary traits
that are either satisfied or violated but rather quantitative at-
tributes for which loss terms can be defined. This approach
aligns with our definition of the completeness-gap (Eq. 2)
as a soft measure of completeness.

As a black-box method, SLOC naturally satisfies the
Implementation Invariance axiom. It relies solely on the
model’s responses to perturbed images and is entirely ag-
nostic to the model’s internal implementation. While the
attributions depend on the randomly selected masks, these
masks can remain fixed and reused across runs.

Regarding the Smoothness and Sparsity priors, SLOC
incorporates L1 and TV regularization terms into its loss
function (Eq. 4), alongside the completeness-gap term
which results in smoother and sparser explanations accord-
ingly. When choosing between explanations with similarly
low completeness gaps, we prioritize those that are smooth
and sparse.

SLOC does not inherently guarantee satisfaction of the
Sensitivity or Linearity axioms. Addressing these limita-
tions to further enhance the quality of explanations is left
for future research.

M. Limitations and Future Work

SLOC relies on the generation of random masks and per-
turbations to produce high-quality explanations for image
classification models. While effective, this approach has po-
tential for improvement through more sophisticated mask-
generation techniques that could further enhance the accu-
racy and robustness of the explanations. We outline several
promising directions for future research to explore and build
upon the current strengths of SLOC.



One area for improvement is the development of more
advanced methods for mask selection. By incorporating
information from previous perturbations and their corre-
sponding model responses, it may be possible to guide the
generation of subsequent masks in a more informed and tar-
geted manner. However, this introduces a trade-off: lever-
aging such information could make the mask generation
process more sequential, thereby reducing its parallelizabil-
ity. Future research could explore this trade-off and inves-
tigate strategies to balance informed mask generation with
computational efficiency.

Another promising direction involves the use of progres-
sive multi-resolution perturbations—starting with coarse
masks composed of large patches (low resolution) and grad-
ually refining the analysis by decreasing patch size in re-
gions identified as influential. This hierarchical approach
may lead to more accurate and interpretable explanations.

In parallel, incorporating image-specific features such
as segmentation-based masks represents an alternative ap-
proach. Instead of relying on randomly positioned patches,
masks could be constructed using more meaningful seg-
ments derived from a segmentation algorithm, potentially
aligning the perturbations more closely with the structure
of the input image and improving the interpretability of the
resulting attributions.

Another area that worth further investigation pertains to
the SLOC optimization phase. In this phase (Sec. 3.2),
SLOC evaluates the completeness-gap across all masks at
every optimization step using gradient descent. Future work
could explore the use of stochastic gradient descent, where
a subset of masks is considered at each step. Introducing
stochasticity in the optimization phase might improve con-
vergence, while still allow for the generation of masks and
responses in advance, enabling parallelization to be lever-
aged.

By exploring these avenues, SLOC can be further refined
to produce even more accurate, reliable, and robust expla-
nations.

Last but not least, as part of our future research we plan
to investigate the applicability of SLOC to additional do-
mains, such as natural language processing, audio models,
and recommender systems. Yet, applying the concept be-
hind SLOC to new domains would require necessary adap-
tations to support different types of input representations.



