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A. Appendix Overview

The appendix provides additional materials and detailed

analyses to support the findings and discussions presented

in the main paper. A summary of its contents is as follows:

• Evaluation Metrics (Sec. B): Detailed descriptions of the

evaluation metrics used in this work.

• Explanation Methods (Sec. C): Descriptions of explana-

tion methods included in the evaluation.

• SLOC Implementation Details (Sec. D): Precise imple-

mentation details of the SLOC method.

• Additional Quantitative and Qualitative Results

(Sec. E): Quantitative and qualitative comparisons of

SLOC and other state-of-the-art explanation methods on

additional model architectures across all benchmarks.

• Ablation Study (Sec. F): Comprehensive analyses of the

effects of varying design choices and hyperparameters in

the SLOC method.

• Computational Complexity (Sec. G): An analysis of the

computational complexity of SLOC.

• Runtime Comparison (Sec. H): A comparison of the

runtime of SLOC and other explanation methods.

• Notable Explanation Examples (Sec. I): Presentation

and discussion of several notable attribution maps pro-

duced by SLOC.

• Sanity Checks (Sec. J): Experimental validation of the

SLOC method using parameter and data randomization

sanity tests, as proposed in [3].

• Motivation Formalization (Sec. K): Formalization of

SLOC motivation introduced in Sec. 3.1.

• Additional Axioms (Sec. L): A discussion of additional

axioms, with an analysis of those satisfied by the SLOC

method.

• Limitations and Future Work (Sec. M): An exploration

of the limitations of SLOC, along with potential avenues

for future research.

B. Evaluation Metrics

There is no single measure or test set which is generally

acceptable for evaluating explanation maps. In this section,

we detail the evaluation metrics used in our experiments, in-

cluding faithfulness evaluation metrics, segmentation eval-

uation metrics, and the FunnyBirds evaluation metrics.

B.1. Faithfulness evaluation metrics

To ensure comparability, evaluations in this research follow

earlier works [26, 28, 49, 57] (but are not limited to them).

In general, the various tests entail different types of masking

of the original input according to the explanation maps and

investigating the change in the model’s prediction for the

masked input compared to its original prediction based on

the unmasked input. The difference in predictions refer to

the model’s original top-predicted class. A detailed descrip-

tion of the relevant experiments can be found in Sec. 4.1.

In what follows, we list and define the different evalua-

tion measures used in this research:

1. Perturbation tests entail a stepwise process in which pix-

els in the original image are gradually masked out ac-

cording to their relevance score obtained from the expla-

nation map [28]. At each step, an additional 5% of the

pixels are removed and the original image is gradually

blacked out. The performance of the explanation model

is assessed by measuring the area under the curve (AUC)

with respect to the model’s prediction on the masked im-

age compared to its prediction with respect to the origi-

nal (unmasked) image. We consider two types of mask-

ing:

(a) Positive perturbation (POS), in which we mask the

pixels in decreasing order, from the highest rele-

vance to the lowest, and expect to see a steep de-

crease in performance, indicating that the masked

pixels are important to the classification score.

Hence, for the POS perturbation test, lower values

indicate better performance.

(b) Negative perturbation (NEG), in which we mask

the pixels in increasing order, from lowest to high-

est. A good explanation would maintain the accu-

racy of the model while removing pixels that are

not related to the class of interest. Hence, for the

NEG perturbation test, lower values indicate better

performance.

(c) NEG-POS Difference (NPD) - (NEG−POS) cap-

tures the contrast between the complementary NEG

and POS metrics, with higher values indicating bet-

ter performance.

In both positive and negative perturbations, we measure

the area-under-the-curve (AUC), for erasing between

5%-95% of the pixels. As explained above, results are

reported with respect to the ‘predicted’ or the ‘target’

(ground-truth) class.

2. The deletion and insertion metrics [57] are described as

follows:

(a) The deletion (DEL) metric measures a decrease in

the probability of the class of interest as more and

more important pixels are removed, where the im-

portance of each pixel is obtained from the gener-

ated explanation map. A sharp drop and thus a low

area under the probability curve (as a function of the



fraction of removed pixels) means a good explana-

tion.

(b) In contrast, the insertion (INS) metric measures the

increase in probability as more and more important

pixels are revealed, with higher AUC indicative of

a better explanation.

(c) INS-DEL Difference (IDD) - (INS −DEL) cap-

tures the contrast between the complementary INS

and DEL metrics, with higher values indicating bet-

ter performance.

Note that there are several ways in which pixels can be

removed from an image [30]. In this work, we remove

pixels by setting their value to zero. Gradual removal or

introduction of pixels is performed in steps of 0.05 i.e.,

remove or introduce 5% of the pixels on each step).

3. The Accuracy Information Curve (AIC) and the Softmax

Information Curve (SIC) [49] metrics are both similar

in spirit to the receiver operating characteristics (ROC).

These measures are inspired by the Bokeh effect in pho-

tography [52], which consists of focusing on objects of

interest while keeping the rest of the image blurred. In

a similar fashion, we start with a completely blurred

image and gradually sharpen the image areas that are

deemed important by a given explanation method. Grad-

ually sharpening the image areas increases the informa-

tion content of the image. We then compare the explana-

tion methods by measuring the approximate image en-

tropy (e.g., compressed image size) and the model’s per-

formance (e.g., model accuracy).

(a) The AIC metric measures the accuracy of a model

as a function of the amount of information provided

to the explanation method. AIC is defined as the

AUC of the accuracy vs. information plot. The in-

formation provided to the method is quantified by

the fraction of input features that are considered

during the explanation process.

(b) The SIC metric measures the information content of

the output of a softmax classifier as a function of the

amount of information provided to the explanation

method. SIC is defined as the AUC of the entropy

vs. information plot. The entropy of the softmax

output is a measure of the uncertainty or random-

ness of the classifier’s predictions. The information

provided to the method is quantified by the fraction

of input features that are considered during the ex-

planation process.

B.2. FunnyBirds Evaluation Metrics

The FunnyBirds synthetic data generation process enables

intervention and inspection at the object part level rather

than at the pixel level. Each FunnyBird consists of five

distinct parts: beak, wings, feet, eyes, and tail. The Fun-

nyBirds evaluation protocol assesses explainability across

three aspects: Completeness, Correctness, and Contrastiv-

ity, and provides an overall score, which is the average of

these three aspects. The relevant experiments are described

in Sec. 4.1, [44].

We define the following notation:

• PI (·) – Part Importance Score: The total attribution

summed within a given part.

• P(·) – Set of Important Parts: The parts considered im-

portant, where a part is deemed important if its impor-

tance score constitutes at least t% of the total attribution.

• D – The FunnyBirds dataset, containing N images xn,

each associated with a class label cn.

• f – The model under evaluation, where f(xn) denotes the

logit for the target class, and f̂(x) denotes the predicted

class.

• ef (xn) – The explanation generated for xn with respect

to its target class cn.

Correctness (Cor.)

Measures the faithfulness of the explanation with respect to

the model.

• Single Deletion Protocol (SD):

Quantifies correctness by evaluating the correlation be-

tween Part Importance Scores and the change in logits

when individual parts are removed from the image.

SD =
1

2
+

1

2N

N
∑

n=1

ρ (PI(ef (xn)), f(xn)− f(x′′
n))

where x′′
n denotes the image obtained by removing a sin-

gle bird part from xn. ρ denotes the Spearman rank-order

correlation coefficient.

Completeness (Com.)

Evaluates whether the explanation accounts for all relevant

factors influencing the model’s decision. The score is com-

puted as the mean of the averaged completeness metrics

(CSDC, PC, and DC), and the Distractability D.

• Controlled Synthetic Data Check (CSDC)

Tests whether the explanation highlights all relevant parts

required for classification:

CSDC =
1

N

N
∑

n=1

max
i

|P (ef (xn)) ∩ P ′
cn,i

|

|P ′
cn,i

|

where P ′
cn,i

represents the minimal set of parts sufficient

for correctly classifying an image as cn.

• Preservation Check (PC)

Quantifies whether preserving only the important parts

identified by the explanation maintains the model’s origi-

nal prediction:

PC =
1

N

N
∑

n=1

[

f̂(x′
n) = f̂(xn)

]



where x′
n is the image obtained by removing all bird parts

except P (ef (xn)).
• Deletion Check (DC)

Quantifies whether removing explanation identified im-

portant parts leads to a change in the model’s prediction:

DC =
1

N

N
∑

n=1

[

f̂(x′′
n) ̸= f̂(xn)

]

where x′′
n is the image obtained by removing the identi-

fied important parts P (ef (xn)).
• Distractability (D)

Ensures that explanations do not highlight irrelevant

parts:

D = 1−
1

N

N
∑

n=1

|P (ef (xn)) ∩ P ′′
f(xn)

|

|P ′′
f(xn)

|

where P ′′
f(xn)

denotes the set of non-important parts.

Contrastivity (Con.)

Measures how well explanations distinguish between differ-

ent class outputs. Explanations for different classes should

highlight class-specific parts.

• Target Sensitivity Protocol (TS)

TS =
1

2N

N
∑

n=1

[PI ′(ef (xn, ĉ1)) > PI ′(ef (xn, ĉ2))] +

[PI ′′(ef (xn, ĉ1)) < PI ′′(ef (xn, ĉ2))]

For each input, two classes ĉ1 and ĉ2 are chosen such that

they have exactly two non-overlapping common parts.

PI ′, PI ′′ denote the summed part importances of the two

parts belonging to classes ĉ1, ĉ2 respectively.

Accuracy and Background Independence

The FunnyBirds evaluation protocol reports, in addition to

the metrics, the model’s accuracy (Acc.) and background

independence (B.I.) with respect to the dataset. B.I. mea-

sures the model’s sensitivity to the entire image, computed

as the ratio of background objects such that, when removed,

the target logit decreases by less than 5%. Accuracy is rele-

vant because an overly simplified model may be explainable

but may not effectively solve the task at hand. For more de-

tails see [44].

B.3. Segmentation evaluation metrics

To quantitatively assess the alignment between the gener-

ated explanation maps and human-annotated GT segmenta-

tions, we employ the following standard segmentation met-

rics:

Mean Average Precision (mAP) The mean Average Pre-

cision at a given Intersection over Union (IoU) threshold τ

is computed as:

mAPτ =
1

N

N
∑

i=1

APi
τ , (6)

where APi
τ is the average precision for the i-th sample, and

N is the total number of samples. The final mAP score is

obtained by averaging across multiple IoU thresholds.

Mean Intersection over Union (mIoU) The IoU for a

given sample is defined as:

IoU =
|S ∩G|

|S ∪G|
, (7)

where S is the predicted saliency region and G is the ground

truth segmentation mask. The mean IoU is then computed

as:

mIoU =
1

N

N
∑

i=1

IoUi. (8)

Pixel Accuracy (PA) Pixel accuracy measures the pro-

portion of correctly classified pixels and is given by:

PA =

∑N

i=1 |Si ∩Gi|
∑N

i=1 |Gi|
. (9)

This metric quantifies the overall agreement between the

predicted and ground truth segmentations.

A detailed description of the relevant experiments can be

found in Sec. 4.1.

C. Explanation Methods

1. Grad-CAM (GC) [59] integrates the activation maps

from the last convolutional layer in the CNN by employ-

ing global average pooling on the gradients and utilizing

them as weights for the feature map channels.

2. Grad-CAM++ (GC++) [26] is an advanced variant of

Grad-CAM that utilizes a weighted average of the pixel-

wise gradients to generate the activation map weights.

3. Integrated Gradients (IG) [64] integrates over the inter-

polated image gradients.

4. Guided IG (GIG) [50] improves upon Integrated Gradi-

ents by introducing the idea of an adaptive path method.

By calculating integration along a different path than

Integrated Gradients, high gradient areas are avoided

which often leads to an overall reduction in irrelevant

attributions.

5. The FullGrad (FG) method [63] provides a complete

modeling approach of the gradient by also taking the

gradient with respect to the bias term, and not just with

respect to the input.



6. LayerCAM (LC) [48] utilizes both gradients and activa-

tions, but instead of using the Grad-CAM approach and

applying pooling on the gradients, it treats the gradients

as weights for the activations by assigning each location

in the activations with an appropriate gradient location.

The explanation map is computed with a location-wise

product of the positive gradients (after ReLU) with the

activations, and the map is then summed w.r.t. the acti-

vation channel, with a ReLU applied to the result.

7. Ablation-CAM (AC) [32] is an approach that only uses

the channels of the activations. It takes each activation

channel, masks it from the final map by zeroing out all

locations of this channel in the explanation map pro-

duced by all the channels, computes the score on the

masked explanation map (the map without the specific

channel), and this score is used to assign an importance

weight for every channel. At last, a weighted sum of the

channels produces the final explanation map.

8. The Transformer attribution (T-Attr) [28] method com-

putes the importance of each input token by analyzing

the attention weights assigned to it during self-attention.

Specifically, it computes the relevance score of each to-

ken as the sum of its attention weights across all layers

of the Transformer. The intuition behind this approach

is that tokens that receive more attention across differ-

ent layers are likely more important for the final pre-

diction. To obtain a more interpretable and localized

visualization of the importance scores, the authors also

propose a variant of the method called Layer-wise Rel-

evance Propagation (LRP), which recursively distributes

the relevance scores back to the input tokens based on

their contribution to the intermediate representations.

9. Generic Attention Explainability (GAE) [27] is a gener-

alization of T-Attr for explaining Bi-Modal transformers.

10. Deep Integrated Explanations (DIX) [14] is an advanced

version of Integrated Gradients which performs integra-

tion over intermediate network representations, instead

of input image.

11. RISE [57] creates perturbations by masking areas in

the image through upsampling of randomly drawn low-

resolution binary grids. The class score corresponding

to each masked version of the image serves as an im-

portance score for that specific mask. Finally, a linear

combination of all masks, weighted by their importance,

forms the final attribution map.

12. Meaningful Perturbation (MP) [39] employs gradient

descent to optimize a mask that, when applied to the

original image, generates a perturbation by occluding a

small yet critical region.

13. Extremal Perturbations (EP) [38] - under a given mask-

size constraint, EP employs gradient descent to optimize

a mask of the specified size that maximally enhances the

model’s output. By iterating over different mask sizes,

EP determines the smallest mask size capable of pushing

the model’s output beyond a predefined threshold.

14. Learning to Explain (LTX) [12] introduces a surrogate

’explainer’ model pretrained to mask as much of the in-

put as possible while preserving the original prediction,

thereby ensuring the retained features are those most rel-

evant to the model’s decision. Then, LTX finetunes the

attribution per specific example, while monitoring the

metric of interest, thereby allowing the selection of the

best-performing attribution w.r.t. to the metric at hand.

D. SLOC Implementation Details

This section details the implementation and hyperparame-

ter configuration used in our SLOC implementation. The

full implementation is available in our GitHub repository.

In Sec. F, we provide comprehensive ablation studies ana-

lyzing the impact of various SLOC hyperparameters.

Mask Generation Phase During this phase, a total of

|M| = 1000 masks were generated. Specifically, the masks

were generated by sampling entire regions corresponding

to square patches, rather than individual pixels. To this end,

we define a grid of patches of size L × L, which is suffi-

ciently large to encompass the entire image, even when the

grid is offset by up to L pixels in either direction along the

axes. The grid is then overlaid onto the image, ensuring

full coverage, and two offsets, denoted as bx and by , are

drawn independently from a discrete uniform distribution

over the set {0, ..., L− 1}. The grid is subsequently shifted

according to the sampled offsets, with bx and by controlling

the shift along the x-axis and y-axis, respectively. For each

patch defined by the offset grid placement, a Bernoulli ran-

dom variable with a success probability of p is sampled, and

all pixels within the patch are set to the outcome (either 0 or

1). In our experiments, M consists of 500 sampled masks

with L = 32 and another 500 sampled masks with L = 56.

Tuning of p We consider two approaches for tuning the

probability parameter p. The first approach (used in SLOC)

tunes p per input and patch size by first sampling 50 masks

for each value of p in the range [0.2, 0.8] with increments of

0.05. For each value of p, we compute the variance of the

model’s prediction across the corresponding 50 masks and

select the value that yields the highest variance.

The motivation for selecting the probability that max-

imize the prediction variance is that an effective set of

masks should include a diverse spectrum of masks that en-

compasses (1) masks that preserve the original prediction,

thereby exposing important features accounting for the pre-

diction, and (2) masks that substantially reduce the predic-

tion score, indicating that essential information has been oc-

cluded. This contrast helps SLOC to better differentiate be-



tween the most and least important regions in the input.

The second approach (used in SLOCxp) tunes p globally

per model and patch size. Specifically, we perform a lin-

ear search to identify the value of p that achieves the best

performance according to the IDD metric, using a desig-

nated set of 1000 examples. The first approach (used in

SLOC) tunes p on a per-input basis by selecting the value

that maximizes the variance of the model’s prediction across

the sampled masks for that specific input. The second ap-

proach tunes p globally by selecting the value that maxi-

mizes performance on a chosen metric of interest over a set

of examples.

These two approaches represent an inherent trade-off:

per-input tuning introduces a modest runtime overhead dur-

ing inference, but it avoids optimizing for the IDD met-

ric, thereby being less biased toward improved faithfulness

scores. In contrast, per-model tuning requires access to a

representative dataset in order to optimize p with respect to

a specific metric. We also note that the per-model approach

could alternatively tune p to maximize prediction variance

globally over the representative dataset; however, we found

this strategy to be suboptimal in practice.

Optimization Phase The elements of the attribution map

a
y
x

were initialized by sampling from N (1, 0.1)3. Then,

the optimization was performed using gradient descent on L
with respect to a

y
x

(Eq. 4), setting λ1 = 0.1 and λ2 = 0.01
for T = 500 update steps. We employed the Adam opti-

mizer with a learning rate of γ = 0.1, with learning rate de-

cay of 0.9 every 45 steps, momentum parameters β1 = 0.9
and β2 = 0.999, with no weight decay. It is worth not-

ing that in this work, the optimization employs gradient de-

scent rather than stochastic gradient descent. Specifically,

we perform a batch gradient update, considering the infor-

mation from all masks for a single update step, as appears in

Eq. 3. In the future, we plan to investigate the benefit from

stochastic updates, each time utilizing different subsets of

M. While this approach may lead to less accurate update

steps, it could potentially improve overall convergence due

to stochasticity.

E. Additional Quantitative and Qualitative Re-

sults

Tables 7 and 8 present quantitative comparisons of SLOC

with other state-of-the-art explanation methods across mul-

tiple faithfulness metrics on the IN dataset, using the RN

and ViT-B models, respectively. Results on the VOC

3This initialization was chosen for simplicity and has proven effective

in practice, despite being arbitrary. An alternative strategy could involve

setting the mean to the model’s response divided by the number of input

elements, along with a standard deviation that ensures predominantly pos-

itive values. However, such approaches remain unexplored and are left for

future work.

dataset, using the DN model, are reported in Tab. 9.

We observe that SLOC consistently emerges as the top-

performing method on average, with GIG, IG, and LTX as

the closest competitors, depending on the model, metric,

and dataset. The performance of the different SLOC vari-

ants is consistent with the trends observed in Tabs. 1-3. Fi-

nally, qualitative comparisons of SLOC and other methods

using the RN and ViT-B models are presented in Figs. 6

and 7.

Figures 8 and 9 illustrate the results of the FB evaluation

protocol for the RN and ViT-B models, respectively, with

Tables 10 and 11 presenting the corresponding numerical

results. The quantitative results plots follow the visualiza-

tion from [44] for consistency, depicting the three evalua-

tion aspects: Completeness (Com), Correctness (Cor), and

Contrastivity (Con). Additionally, they display Accuracy

(Acc) and Background Independence (B.I), which depend

on the model and dataset but are independent of the expla-

nation method, serving as sanity-check metrics. The over-

all score is shown at the center of each plot. Notably, The

FB Completeness (Com) metric differs from the definition

of completeness used in this paper; it evaluates the extent to

which an explanation accounts for all aspects of the model’s

decision, rather than whether the attributions sum to the

model’s response. A detailed description of the metrics is

provided in Sec. B.2.

The results indicate that SLOC achieves the highest over-

all score across both RN and ViT-B models, primarily due to

its strong performance in Correctness (a metric closely re-

lated to faithfulness), while maintaining competitive results

in the Completeness and Contrastivity metrics compared to

the best-performing methods in those categories (DIX, T-

ATTR, and IG).

Tables 12 and 13 present additional results for segmen-

tation tests on the IN-Seg dataset using the DN and ViT-S

models, respectively. We observe that DIX and T-ATTR are

the top-performing methods, while SLOC yields mediocre

to competitive results depending on the metric. It is impor-

tant to reiterate that segmentation performance may not al-

ways serve as a strong indicator of explanation quality [57],

but it does offer insights into how well the generated expla-

nations align with human-annotated ground-truth segmen-

tation maps. Higher segmentation accuracy may suggest

that a method excels at object detection rather than identi-

fying the most informative features driving the model’s pre-

diction. The most relevant features for explanation often do

not cover the entire object but instead represent a subset that

is critical to the model’s decision.

F. Ablation Study

We present extensive ablation studies investigating the sig-

nificance of the different loss terms in Eq. 4, and the hyper-

parameters of SLOC. The ablation studies are conducted on



Method POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

SLOCm 10.96 75.84 8.68 64.19 64.87 55.5 79.44 78.13

SLOC 10.65 69.56 8.32 58.33 58.91 50.01 78.5 77.04

SLOCxp 10.74 68.62 8.41 57.41 57.88 49.01 77.75 76.78

AC 16.7 66.96 12.76 55.71 50.26 42.95 77.17 74.59

DIX 10.21 58.33 7.83 48.16 48.11 40.33 71.15 68.81

EP 14.9 66.41 11.5 54.51 51.51 43.01 75.06 73.96

FG 16.79 65.9 12.94 54.9 49.11 41.96 74.16 71.54

GC 16.37 68.04 12.56 56.65 51.67 44.1 77.33 75.1

GC++ 16.81 66.85 12.85 55.54 50.04 42.68 76.82 74.54

GIG 9.4 45.28 7.68 37.71 35.89 30.03 57.52 54.51

IG 9.9 44.22 7.76 37.14 34.32 29.38 56.56 54.23

LC 17.04 66.58 13.0 55.25 49.54 42.25 76.46 74.33

LTX 14.98 69.88 11.7 57.74 54.91 46.03 76.69 74.29

MP 17.16 50.81 13.6 41.34 33.65 27.74 64.71 62.52

RISE 15.8 62.3 12.04 51.93 46.5 39.89 77.31 74.77

Table 7. Faithfulness results for all combinations of method and metric, using the RN model on the IN dataset.

Method POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

SLOCm 21.54 89.01 14.93 63.05 67.48 48.12 85.42 81.82

SLOC 22.39 85.72 15.7 59.85 62.73 43.71 84.82 81.86

SLOCxp 22.36 85.10 15.56 59.27 62.98 43.88 84.74 81.58

DIX 32.09 77.01 21.14 51.17 44.92 30.03 79.88 74.92

EP 41.24 82.95 25.18 58.99 41.72 33.81 81.59 77.32

GAE 33.16 76.88 21.95 51.12 43.72 29.17 79.02 74.6

LTX 28.3 80.74 18.8 55.52 52.44 36.72 79.65 74.98

MP 36.63 78.49 23.83 52.82 41.87 28.99 80.58 76.11

RISE 49.7 77.42 32.7 50.09 27.72 17.4 76.65 72.16

TATTR 32.8 77.24 21.49 51.56 44.44 30.07 80.04 74.79

Table 8. Faithfulness results for all combinations of method and metric, using the ViT-B model on the IN dataset.

the ViT-S model.

Loss terms Table 14 presents the effect of ablating on

different terms in L (Eq. 4) to faithfulness performance:

SLOCxL1 and SLOCxTV are versions that ablate on the L1

term and TV term by setting λ1 = 0 and λ2 = 0, respec-

tively. SLOCxL1xTV is a version that simply set L to Lc

(Eq. 2) which is equivalent to setting both λ1 = 0 and

λ2 = 0. Finally, SLOC is our method. Tables 15 and 16

summarize the faithfulness results for various values of λ1

and λ2.

The results in Tables 14–16 indicate that both regular-

ization terms, TV and L1, introduce trade-offs across the

explanation metrics. For example, L1 regularization with-

out TV (SLOCxTV) outperforms SLOC across all metrics

except for AIC and SIC. In contrast, applying TV without

L1 (SLOCxL1) leads to degradations in NEG and INS (and

the corresponding summary metrics), while the remaining

metrics remain largely unaffected. Finally, when no regu-

larization is applied at all (SLOCxL1xTV), we observe im-

provements in POS and DEL but significant degradations in

NEG, INS, AIC, and SIC.

These results suggest that both regularization terms yield

mixed effects on faithfulness metrics, highlighting no con-

sistent trend. However, faithfulness is only one aspect of

explanation quality. Therefore, in Tables 17 and 18, we

further examine segmentation performance across varying

values of λ1 and λ2, respectively. In this case, we observe

that applying TV and L1 leads to marginal improvements in

segmentation performance. This aligns with the observation

that the regularization terms contribute to more focused and

visually ’clean’ explanations from a human perspective.

Patch size L Table 19 presents a comparative analysis of

different settings of the patch size L. The results indicate

that increasing the patch size consistently improves perfor-

mance on the NEG, INS, AIC, and SIC metrics, while lead-

ing to a degradation in the POS and DEL metrics beyond a

patch size of L = 32. This observation suggests that differ-

ent metrics may benefit from different patch size settings.

Therefore, in our experiments, we consider a combination

of two sets of masks—one generated with a patch size of

32 and another with 56—as this configuration achieves bal-

anced improvements across all metrics, yields the best val-

ues for the NPD and IDD summary metrics, and delivers

state-of-the-art performance.

Number of sampled masks |M| Table 20 presents a

comparison between different choices of |M|. Notably, we

observe that beginning from |M| = 1000 SLOC exhibits



Method POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

SLOCm 6.24 61.32 4.19 45.15 55.09 40.96 68.6 71.89

SLOC 6.19 53.4 4.05 39.01 47.2 34.97 65.63 70.92

SLOCxp 6.40 52.61 4.08 38.11 45.74 34.04 66.65 70.58

AC 10.06 50.15 6.4 33.85 40.09 27.45 61.46 65.05

DIX 8.2 43.89 5.19 29.31 35.7 24.12 58.67 61.64

EP 9.08 49.12 5.91 33.1 40.04 27.19 63.7 65.53

FG 9.42 27.99 6.36 19.43 18.57 13.07 36.75 39.37

GC 9.85 51.83 6.24 34.89 41.99 28.64 63.16 65.68

GC++ 10.11 49.43 6.5 33.03 39.31 26.54 61.42 64.15

GIG 6.47 30.37 4.3 21.46 23.9 17.16 41.59 44.56

IG 7.73 30.88 5.09 21.56 23.15 16.47 41.59 42.76

LC 10.14 49.29 6.52 32.94 39.15 26.42 61.25 64.39

LTX 8.98 54.84 5.92 36.93 45.86 31.01 61.37 65.11

RISE 9.38 43.75 6.02 30.78 34.38 24.76 61.99 64.67

Table 9. Faithfulness results for all combinations of method and metric, using the DN model on the VOC dataset.

Figure 6. Qualitative comparison of attributions produced by different methods, using the RN model w.r.t. the classes (top to bottom):

’white stork’, ’speed boat’, ’viaduct’, ’black and gold garden spider’.

Method Completeness↑ Correctness↑ Contrastivity↑ Overall↑

SLOC 0.85 0.60 0.87 0.78

SLOCxp 0.86 0.61 0.85 0.77

AC 0.73 0.56 0.80 0.70

DIX 0.74 0.55 0.87 0.72

EP 0.82 0.57 0.8 0.73

FG 0.75 0.56 0.78 0.69

GC 0.74 0.55 0.86 0.72

GC++ 0.74 0.55 0.87 0.72

GIG 0.65 0.54 0.49 0.56

IG 0.86 0.55 0.49 0.63

LC 0.74 0.55 0.86 0.72

RISE 0.70 0.56 0.61 0.62

Table 10. FunnyBirds evaluation results for the RN model.

commendable performance. Although larger values of |M|
may offer potential improvements, our findings suggest that

Method Completeness↑ Correctness↑ Contrastivity↑ Overall↑

SLOC 0.91 0.77 0.96 0.88

SLOCxp 0.92 0.77 0.90 0.86

DIX 0.9 0.76 0.97 0.87

EP 0.89 0.76 0.71 0.79

RISE 0.78 0.79 0.75 0.77

T-Attr 0.9 0.74 0.95 0.87

Table 11. FunnyBirds evaluation results for the ViT-B model.

|M| = 1000 (comprising 500 masks with a patch size of

32 and another 500 with a patch size of 56) is sufficient to

achieve state-of-the-art performance while maintaining rel-

atively fast runtimes.



Figure 7. Qualitative comparison of attributions produced by different methods, using the ViT-B model w.r.t. the classes (top to bottom):

’spotlight’, ’swab’, ’snail’, ’American coot’.

Figure 8. FunnyBirds evaluation results for model RN. See Sec. B.2 for metric descriptions.



Figure 9. FunnyBirds evaluation results for model ViT-B. See Sec. B.2 for metric descriptions.

Method SLOC AC DIX EP FG GC GC++ GIG IG LC LTX RISE

mIoU↑ 0.55 0.56 0.64 0.51 0.45 0.55 0.56 0.49 0.47 0.56 0.56 0.50

mAP↑ 0.79 0.86 0.87 0.77 0.76 0.86 0.87 0.77 0.77 0.87 0.85 0.79

PA↑ 0.75 0.73 0.80 0.72 0.66 0.73 0.74 0.72 0.69 0.74 0.74 0.69

Table 12. Segmentation results for the DN model.

Method SLOC DIX EP GAE LTX MP RISE T-Attr

mIoU↑ 0.52 0.63 0.50 0.61 0.56 0.55 0.50 0.68

mAP↑ 0.76 0.81 0.76 0.79 0.81 0.74 0.75 0.83

PA↑ 0.72 0.79 0.71 0.78 0.72 0.74 0.68 0.82

Table 13. Segmentation results for the ViT-S model.

POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

SLOCxTV 13.33 78.16 11.0 67.44 64.83 56.44 80.91 79.53

SLOCxL1 15.26 76.84 12.54 65.83 61.58 53.29 84.11 82.15

SLOCxL1xTV 13.89 73.60 11.35 62.95 59.70 51.60 77.80 76.28

SLOC 15.35 77.87 12.59 66.76 62.52 54.17 83.87 82.2

Table 14. Faithfulness evaluation. Ablation study on the regular-

ization terms in Eq. 4.

λ1 POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

0.0 15.26 76.84 12.54 65.83 61.58 53.29 84.11 82.15

0.01 15.35 77.87 12.59 66.76 62.52 54.17 83.87 82.2

0.05 15.45 77.56 12.65 67.18 62.11 54.53 83.5 81.74

0.1 15.65 77.26 12.7 66.71 61.61 54.01 83.04 81.5

0.25 15.71 76.34 12.73 66.09 60.63 53.36 82.33 81.29

0.5 15.98 74.98 13.04 64.85 59.0 51.81 80.9 80.88

1.0 17.51 69.7 14.08 60.19 52.19 46.11 77.81 78.21

Table 15. Faithfulness evaluation. Ablation study on λ1 - the co-

efficient of the L1 regularization term in Eq. 4.

Probability p (Bernoulli parameter) for activating mask

patches Table 21 presents a comparison of different

choices for the parameter p, which determines the prob-

λ2 POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

0.0 13.33 78.16 11.0 67.44 64.83 56.44 80.91 79.53

0.01 14.33 79.27 11.85 68.63 64.94 56.78 82.56 81.17

0.1 15.34 77.78 12.59 66.78 62.44 54.18 83.6 81.92

0.2 15.84 78.0 12.97 66.57 62.16 53.6 83.51 81.84

0.5 16.74 78.38 13.69 66.69 61.64 52.99 83.67 82.44

1.0 17.7 78.93 14.37 66.95 61.24 52.58 84.0 82.36

Table 16. Faithfulness evaluation. Ablation study on λ2 - the co-

efficient of the TV regularization term in Eq. 4.

λ1 0 0.01 0.05 0.1 0.25 0.5 0.1

mIoU↑ 0.52 0.55 0.55 0.54 0.52 0.49 0.43

mAP↑ 0.79 0.81 0.81 0.81 0.79 0.76 0.71

PA↑ 0.71 0.74 0.75 0.74 0.72 0.70 0.64

Table 17. Segmentation evaluation. Ablation study on λ1 - the

coefficient of the L1 regularization term in Eq. 4, using the RN

model.

ability of setting a mask patch to 1. Notably, the

last row (SLOC)—corresponding to tuning p per in-

put—outperforms all fixed probability values across all

metrics except for p = 0.3. We note that the optimal fixed p

varies across different models (this ablation was conducted

on the ViT-S model), highlighting an inherent trade-off in

the choice between tuning p per input (SLOC) or per model



λ2 0 0.01 0.1 0.2 0.5 0.1

mIoU↑ 0.54 0.54 0.55 0.55 0.55 0.55

mAP↑ 0.8 0.8 0.8 0.81 0.81 0.82

PA↑ 0.73 0.73 0.74 0.74 0.74 0.74

Table 18. Segmentation evaluation. Ablation study on λ2 - the

coefficient of the TV regularization term in Eq. 4, using the RN

model.

L POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

8 16.42 74.02 13.54 63.52 57.6 49.98 79.42 77.31

16 15.18 75.82 12.44 65.15 60.64 52.71 81.66 80.33

32 14.86 76.55 12.31 65.45 61.69 53.14 83.04 80.88

40 15.67 76.67 12.84 65.52 61.0 52.68 83.08 81.01

48 16.43 77.39 13.35 65.87 60.95 52.53 83.23 81.25

56 17.01 77.49 13.86 65.91 60.48 52.05 82.89 80.98

64 17.69 77.68 14.49 65.75 59.99 51.26 82.48 81.1

SLOC 15.7 77.38 12.83 66.1 61.68 53.26 83.19 81.36

Table 19. Faithfulness performance across different patch size set-

tings.

|M| POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

10 32.91 60.32 26.63 49.16 27.41 22.53 69.26 66.88

100 19.76 70.18 16.15 58.29 50.42 42.14 77.97 75.48

250 17.17 73.96 14.09 62.43 56.79 48.35 80.43 78.47

500 16.36 76.16 13.25 64.51 59.8 51.26 82.44 80.65

750 15.95 77.24 12.93 65.62 61.3 52.7 82.91 81.23

1000 15.7 77.38 12.83 66.1 61.68 53.26 83.19 81.36

1250 15.65 77.55 12.79 66.33 61.9 53.54 83.53 81.64

1500 15.54 78.06 12.77 66.7 62.52 53.93 83.25 81.66

2000 15.51 78.25 12.68 66.95 62.74 54.27 83.66 82.03

Table 20. Faithfulness performance for varying numbers of drawn

masks.

p POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

0.1 18.35 76.28 14.67 64.86 57.93 50.2 81.53 79.85

0.2 16.54 77.76 13.35 66.33 61.21 52.98 82.75 81.17

0.3 15.73 78.21 12.80 66.82 62.49 54.02 83.36 81.56

0.4 16.1 77.75 13.33 66.52 61.65 53.19 82.5 80.96

0.5 17.39 76.11 14.77 65.15 58.71 50.38 81.83 79.62

0.6 19.56 74.38 16.81 63.16 54.82 46.35 80.1 77.79

0.7 23.14 71.45 19.74 60.05 48.31 40.31 78.02 75.1

0.8 26.07 67.94 22.35 56.68 41.87 34.33 75.73 72.63

0.9 31.24 65.15 26.57 53.88 33.91 27.31 72.46 69.19

SLOC 15.35 77.87 12.59 66.76 62.52 54.17 83.87 82.20

Table 21. Faithfulness performance for varying patch probability.

(SLOCxp): in SLOC, p is being tuned during inference (for

the specific input), while in SLOCxp, access to a representa-

tive dataset is required to tune p in advance for each model.

Number of gradient update steps T Table 22 reports the

results for varying numbers of update steps (iterations) in

the SLOC optimization process. We observe that the op-

timal number of iterations varies across metrics. While

POS and DEL favor higher values of T , the best results

for NEG and INS are obtained between 50–100 iterations,

and the summary metrics favor 75 iterations. Since faith-

T POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

25 20.12 75.85 16.41 63.68 55.73 47.27 80.1 77.64

50 17.03 79.86 13.75 68.47 62.83 54.72 83.26 81.77

75 17.19 80.26 13.99 68.9 63.07 54.9 83.9 82.7

100 17.24 80.2 14.12 68.8 62.95 54.68 84.21 82.54

200 16.52 79.1 13.54 67.86 62.57 54.32 83.41 82.44

250 16.19 78.76 13.28 67.59 62.57 54.31 83.71 82.26

500 15.34 77.86 12.59 66.8 62.52 54.21 83.43 82.11

750 14.88 77.46 12.26 66.36 62.58 54.11 83.82 81.97

1000 14.69 77.37 12.09 66.19 62.67 54.1 83.01 82.1

Table 22. Faithfulness performance for varying numbers of gradi-

ent update steps (iterations).

fulness metrics provide only a partial assessment of expla-

nation quality, we found that setting T = 500 offers the

best balance across all benchmarks (faithfulness, segmenta-

tion, FB) and produces satisfactory attributions from a hu-

man perspective.

Empirically, a higher number of iterations results in

lower DEL and POS scores, which in turn lead to more fo-

cused and compact attributions. This can be explained by

the fact that low AUC values in the DEL and POS metrics

are encouraged by a sharp drop in the metric curves, caused

by masking a relatively small percentage of elements in the

image that correspond to the most influential features (as-

suming the explanation method indeed highlight the most

influential ones). This indicates that the attribution concen-

trates on a small, compact region—often perceived as more

meaningful and interpretable from a human perspective.

SLOC attributions aggregation vs. single-run approach

Due to the inherent stochasticity in SLOC, arising from both

mask sampling and the optimization process, different runs

of SLOC on the same input may yield different attribution

maps. This motivates two lines of investigation: (1) we

examine the effect of aggregating N attribution maps pro-

duced by N independent runs of SLOC into a single, com-

bined attribution map; and (2) since N runs of SLOC effec-

tively involve sampling a total of N |M| masks, we study

the behavior of SLOC when using N |M| masks in a sin-

gle run, as the alternative of aggregating N independently

generated attribution maps.

We consider four aggregation methods: mean, median,

minimum, and product. The results for each method are

summarized in Tabs. 23, 24, 25, and 26, respectively. Over-

all, we observe that median and minimum aggregations im-

prove faithfulness results, followed by mean aggregation,

which provides slight to negligible improvement. Prod-

uct aggregation does not yield any gain and even results in

slight degradations in some metrics. We note that for prod-

uct aggregation, we apply ReLU to each attribution map be-

fore computing the product to avoid sign issues, as SLOC

can produce negative attributions. Given this choice, we

believe the degradation is due to the zeroing of all negative



values, combined with the fact that product aggregation is

equivalent to an intersection operation, which may be too

aggressive.

A demonstration of the resulting attribution maps from

the four different aggregation methods across varying val-

ues of N appears in the first four rows of Fig. 10. For

N = 1, the attribution map is identical for all methods,

as no aggregation is applied. As the number of attributions

N increases, we observe a artifact reduction effect across

all aggregation methods. Arguably, minimum aggregation

produces the ‘cleanest’ attribution while still highlighting

most of the influential features related to the prediction. Vi-

sually, mean and median aggregations produce similar at-

tribution maps, with slightly less artifacts in the median ag-

gregation. Product aggregation, while producing very clean

attributions, fails to capture the significant regions and fea-

tures of the object associated with the predicted classes.

Table 27 summarizes the results of the alternative ap-

proach: applying a single run of SLOC with N |M| sam-

pled masks (for different values of N ), allowing for a fair

comparison to the aggregation methods. We observe im-

provements across all faithfulness metrics as N , and conse-

quently the number of sampled masks, increases. However,

this improvement plateaus for the majority of metrics start-

ing from N > 2.

When comparing the single-run approach to the aggrega-

tion methods, we observe a slight improvement in POS and

DEL compared to the leading aggregation methods (mini-

mum and median). For AIC and SIC, the performance is

comparable, while for the remaining metrics, the leading

aggregation methods produce better results than the single-

run approach.

The last row in Fig. 10 (the ’base’ row) presents the re-

sulting attributions for the single-run approach across vary-

ing values of N . Similar to the aggregation methods, we ob-

serve an artifact reduction effect as N increases. Arguably,

the single-run method with N = 10 best highlights the im-

portant features in the image from a human perspective,

while producing fewer artifacts than median aggregation.

Minimum aggregation, while generating the least amount

of artifacts, presents less coherent highlighting of the object

compared to the single-run method.

Overall, we conclude that minimum and median aggre-

gation methods show potential to improve both faithfulness

results and visual quality. However, a comparable improve-

ment can also be achieved by simply increasing the number

of sampled masks in a single run of SLOC.

G. Computational Complexity

The computational complexity of SLOC is determined by

the number of gradient update steps T and the number of

forwards passes through the model which corresponds to

the number of sampled masks, |M|. In our implementa-

N POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

1 15.79 77.49 12.95 66.16 61.7 53.22 83.21 81.19

2 15.35 78.05 12.59 66.64 62.7 54.05 83.5 81.96

3 15.4 78.13 12.52 66.74 62.74 54.22 83.74 82.41

4 15.34 78.03 12.5 66.77 62.69 54.26 83.75 82.19

5 15.4 78.12 12.49 66.88 62.72 54.39 83.58 82.18

6 15.41 78.18 12.52 66.87 62.77 54.35 84.08 82.31

7 15.37 78.22 12.48 66.85 62.85 54.37 83.84 82.2

8 15.46 78.24 12.48 66.88 62.77 54.4 84.03 82.26

9 15.41 78.38 12.47 66.91 62.97 54.44 83.77 82.45

10 15.4 78.44 12.45 66.94 63.05 54.49 83.96 82.6

Table 23. Evaluating the effect of combining N generated attribu-

tions by mean aggregation to produce the final attribution map.

N POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

1 15.79 77.49 12.95 66.16 61.7 53.22 82.77 81.36

2 15.4 78.76 12.68 67.51 63.36 54.83 83.58 81.68

3 15.42 79.73 12.68 68.51 64.31 55.83 83.61 81.96

4 15.27 80.13 12.66 68.84 64.86 56.18 83.75 82.17

5 15.39 80.24 12.66 69.18 64.86 56.52 83.67 82.53

6 15.41 80.42 12.68 69.41 65.02 56.73 83.84 82.37

7 15.48 80.5 12.69 69.66 65.02 56.96 83.63 82.27

8 15.35 80.84 12.66 69.68 65.49 57.02 84.34 82.38

9 15.58 80.84 12.75 69.87 65.26 57.12 84.11 82.55

10 15.36 80.7 12.74 69.82 65.34 57.08 83.9 82.74

Table 24. Evaluating the effect of combining N generated attribu-

tions by median aggregation to produce the final attribution map.

N POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

1 15.79 77.49 12.95 66.16 61.7 53.22 82.62 81.57

2 15.4 78.76 12.68 67.51 63.36 54.83 83.09 81.6

3 15.48 79.06 12.57 67.9 63.57 55.34 83.19 81.61

4 15.38 79.07 12.58 68.04 63.69 55.46 83.34 81.81

5 15.37 79.08 12.53 68.14 63.72 55.6 83.41 81.74

6 15.3 79.19 12.47 68.26 63.89 55.8 83.5 81.93

7 15.27 79.2 12.49 68.19 63.93 55.7 83.1 81.88

8 15.43 79.21 12.51 68.24 63.78 55.73 83.28 81.89

9 15.29 79.28 12.5 68.4 64.0 55.9 83.63 81.99

10 15.29 79.65 12.49 68.51 64.36 56.02 82.98 82.11

Table 25. Evaluating the effect of combining N generated attri-

butions by minimum aggregation to produce the final attribution

map.

N POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

1 15.79 77.49 12.95 66.16 61.7 53.22 82.75 81.23

2 15.48 77.24 12.67 65.75 61.76 53.07 83.12 81.89

3 15.3 77.01 12.58 65.48 61.71 52.9 83.3 81.62

4 15.35 76.77 12.59 65.27 61.43 52.67 83.16 81.56

5 15.38 76.86 12.6 65.22 61.47 52.61 82.81 81.67

6 15.58 76.86 12.67 65.02 61.28 52.35 83.31 81.59

7 15.67 76.87 12.72 64.88 61.2 52.16 82.73 81.36

8 15.67 76.46 12.72 64.62 60.79 51.9 82.5 81.34

9 15.7 76.63 12.75 64.63 60.93 51.88 82.63 81.31

10 15.8 76.16 12.74 64.48 60.37 51.73 82.76 80.91

Table 26. Evaluating the effect of combining N generated attri-

butions by multiplying them element-wise to produce the final

attribution map.

tion, we use the same set of masks throughout the entire

optimization process. This allows for precomputation of



Figure 10. Aggregation of N attribution maps produced by independent runs of SLOC using different aggregation methods (mean, median,

minimum, and product), compared to a single run of SLOC with N |M| masks.

N POS↓ NEG↑ DEL↓ INS↑ NPD↑ IDD↑ AIC↑ SIC↑

1 15.38 77.54 12.74 66.16 62.16 53.42 83.48 81.18

2 15.16 77.73 12.51 66.71 62.57 54.2 83.58 81.99

3 15.1 78.3 12.53 67.11 63.21 54.57 84.06 82.0

4 15.15 78.25 12.42 67.12 63.1 54.7 83.54 82.22

5 15.13 78.0 12.37 67.23 62.87 54.86 83.94 82.36

6 15.17 78.18 12.43 67.3 63.01 54.87 83.83 82.34

7 15.17 78.11 12.42 67.15 62.94 54.73 84.13 82.29

8 15.15 78.22 12.38 67.32 63.07 54.94 83.92 82.49

9 15.29 78.41 12.38 67.33 63.13 54.95 84.03 82.46

10 15.11 78.24 12.33 67.31 63.13 54.98 83.89 82.6

Table 27. Single-run experiment. Each row reports faithfulness

results obtained by SLOC using N |M| sampled masks for varying

values of N (to match the total number of masks used across N

attributions in the aggregation experiments).

the model’s response r(xm) once, which is then reused in

subsequent optimization steps. Specifically, before the op-

timization begins, each masked version of the input xm is

passed through the model once, and the corresponding set

of model responses, {r(xm)}m∈M, is stored. Additionally,

for each mask, we precompute and store |m| which is re-

quired for normalizing the completeness gap, as shown in

Eq. 2.

Subsequently, the optimization proceeds through a se-

ries of gradient updates, each relying on a sequence of

lightweight tensor arithmetic operations as outlined in

Eq. 3. Importantly, during the optimization process, both

r(xm) and |m| are fixed, precomputed values that remain

constant across all gradient updates. The only term that

changes with each update is the attribution map a
y
x

, which

is refined iteratively in each step.

As a result, at least in theory, SLOC optimization is more

efficient than other optimization-based attribution meth-

ods [12, 39] that require both forward and backward passes

(due to gradient backpropagation through the model) at

each update step, leading to higher computational costs

per update. Additionally, SLOC can become computation-

ally lighter than path integration methods, if the number

of interpolations in the integral approximation is equiva-

lent to the number of masks drawn in SLOC. This is be-

cause each interpolation step in the path integration requires

a forward-backward pass for gradient computation, whereas

each mask in SLOC only requires a forward pass. In Sec. H,

we present runtime comparisons demonstrating that SLOC

achieves faster runtimes relative to other explanation meth-

ods.

It is important to note that the computation for each mask

is independent, hence embarrassingly parallel. As long

as the computational resources support accommodating the

batch of masks in GPU memory, including the propagation

of the perturbed (masked) inputs through the model, the gra-

dients for all sub-maps can be computed in parallel via a

single forward pass. Accordingly, the precomputation of

the model responses for all perturbed inputs is also embar-

rassingly parallel and can be efficiently achieved in a single

pass through the model using GPU parallelization.



SLOC SLOCxp DIX EP GAE LTX MP RISE T-Attr

Runtime (seconds) 6.79 3.43 0.4 13.25 0.03 7.1 4.05 9.11 1.02

Table 28. Runtime comparison between SLOC and other attribution methods using the ViT-S model.

H. Runtime Comparison

We evaluated the runtime efficiency of SLOC in compari-

son to other explanation methods by running each method

on the same random subset of 100 examples from the IN

dataset using the ViT-S model. The resulting runtimes

are presented in Tab. 28. We observe that SLOC variants

demonstrate competitive to superior runtime performance

relative to other perturbation- and optimization-based meth-

ods. However, alternative approaches such as DIX, T-Attr,

and GAE run faster than SLOC. Notably, SLOCxp offers

improved runtime efficiency over SLOC, at the cost of

slightly reduced performance on the FB benchmark. As ex-

plained in Sec. G, SLOC benefits from independent mask

generation, enabling parallel processing on a GPU, which

reduces computation time. Furthermore, SLOC requires

fewer masks than other perturbation-based methods. For

instance, RISE [57] reports using between 4,000 and 8,000

masks.

While SLOC’s optimization phase is sequential, it avoids

model evaluation or backpropagation - a step required by

other optimization-based methods such as MP, EP, and

LTX. This is since the model’s response r(xm) in Eq. 4 is

precomputed and remains fixed throughout the optimization

process. This design ensures that the runtime of SLOC’s op-

timization phase is unaffected by the size or complexity of

the model.

Finally, it is worth noting that explanations, unlike pre-

dictions, are often used for debugging and auditing pur-

poses, where the added computation time for a more ac-

curate and informative explanation is generally regarded as

a worthwhile trade-off.

I. Notable Explanation Examples

In this section, we present several case studies of attribu-

tion maps generated by SLOC, highlighting its effectiveness

across diverse input settings. Additionally, we demonstrate

the limitations of optimizing for global vs. local complete-

ness.

Multi-instance settings Figure 11 presents a synthetic

image featuring two identical instances of the ’indigo-

bunting’ bird, on the left and right halves of the image. This

image yields a response of 0.9999 for the ’indigo-bunting’

class for the complete image, by the RN model. When

masking out the right half, preserving only the left bird, or

masking out the left half preserving only the right half, the

Figure 11. Two copies of the same object are shown (left) along

with the corresponding attribution map generated by the SLOC

method. The image yields a very high (above 0.99) model re-

sponse for the ‘indigo-bunting’ class by the ViT-S model. How-

ever, when the image is masked to preserve only one of the copies,

the response remains very high. Therefore, when considering the

three corresponding masks—one preserving the entire image, one

preserving the right half, and one preserving the left half—no at-

tribution map can satisfy local completeness for all three corre-

sponding sub-maps. Despite these potential ‘collisions’, the SLOC

method produces an attribution map that effectively captures both

copies.

Figure 12. A synthetic multi-class image featuring the classes

indigo-bunting and goldfinch. The SLOC attribution map for ViT-

S prediction of the goldfinch class shows negative attributions

(dark blue) on the indigo-bunting’s body, as its presence decreases

the predicted probability for the goldfinch class.

model response remains very high: 0.9992 or 0.9955, re-

spectively. Thus, across the three regions: the complete im-

age, the right half, and the left half — no attribution map

can fully satisfy local completeness for all corresponding

sub-maps. Yet, the SLOC-generated attribution highlights

both copies of the bird. This example demonstrates that the

soft nature of SLOC enables the generation of high-quality

attributions even in cases where local completeness is in-

herently infeasible.

Multi-class settings Figure 12 presents a synthetic im-

age created by combining two images (from IN): one of

class ‘indigo-bunting’ (left) and one of class ‘goldfinch’

(right). This results in an image composed of two distinct



Figure 13. A multi-class image from the VOC dataset with RN

SLOC attribution maps for the classes dog (center) and person

(right).

regions, each corresponding to a different class. The figure

presents the SLOC attribution for the ViT-S prediction of

the ‘goldfinch’ class. Notably, the attributions in the dark-

blue area containing the indigo-bunting body are negative,

indicating that the presence of the indigo-bunting reduces

the predicted probability for the ‘goldfinch’ class.

Figure 13 shows an image from the VOC dataset, where

the top predicted classes by the RN model are dog and per-

son. The sub-figures present the corresponding SLOC attri-

bution maps for dog (center) and person (right), providing

further empirical evidence of SLOC’s ability to highlight

the relevant features that contribute to the prediction of each

individual class.

Global vs. Local Completeness Optimization Figure 14

compares attribution maps generated for the RN model and

the ‘jellyfish’ class using SLOC, which minimizes com-

pleteness gaps locally over a set of sub-maps (Eq. 4), against

those obtained by minimizing the completeness gap glob-

ally over the entire attribution map. The latter approach,

referred to as the global completeness loss, is defined as

(r(x)[y] −
∑n

i=1 a
y
x[i])

2. Subfigures (a) show the attribu-

tion map produced by SLOC (top) and its overlay on the

input image (bottom). Subfigures (b) present the attribution

map obtained by minimizing the global completeness loss

(top) and its overlay on the input (bottom). Subfigures (c)

display the attribution map generated by minimizing global

completeness with an additional total variation (TV) regu-

larization term (top) and its overlay (bottom). Although the

attribution maps in (b) and (c) satisfy global completeness,

they fail to provide faithful explanations. The attribution

map in (b) is dominated by noise, while the one in (c) is in-

fluenced by artifacts induced by TV regularization applied

to random initialization. This example highlights the limi-

tations of global completeness as a sole optimization objec-

tive. In contrast, SLOC, by promoting local completeness,

produces faithful attribution maps.

J. Sanity Checks

In order to further evaluate the soundness and validity of

SLOC, we conducted both the parameter randomization

Figure 14. Attribution maps produced for the RN model for class

‘jellyfish’. (a) attribution map produced by SLOC. (b) attribution

map obtained by minimizing the global-completeness-loss aiming

to satisfy global-completeness. (c) attribution map obtained by

minimizing global-completeness with an additional TV regular-

ization term. The top row displays the attribution maps, while the

bottom row displays the attribution maps overlaid on the image.

Although global-completeness is satisfied by the attribution maps

in (b) and (c), it is insufficient for producing a faithful explanation.

and data randomization sanity tests as proposed by [3].

The experiments utilize the ImageNet ILSVRC 2012 val-

idation set [31] with the VGG-16 [61] model and SLOC.

J.1. Parameter Randomization Test

The parameter randomization test compares the explanation

maps produced by the explanation method based on two se-

tups of the same model architecture: (1) trained - the model

is trained on the dataset (e.g., a pretrained VGG-16 model

that was trained on ImageNet), and (2) random - the same

model architecture, with random weights (e.g., a randomly

initialized VGG-16 model). For an explanation method that

relies on the actual model to be explained, we anticipate

significant differences in the explanation maps produced

for the trained model and those produced for the random

model. Conversely, if the explanation maps are similar, we

conclude that the explanation method is insensitive to the

model’s parameters, and thus may not be useful for explain-

ing the model’s prediction. It is worth noting that parameter

randomization sanity checks were found inadequate as a cri-

terion for ranking attribution methods, due to the observed

performance gap between faithfulness metrics and random-

ization tests [23]. Nevertheless, we report these results for

the sake of completeness.

Given a trained model, we consider two types of parame-

ter randomization tests: The first test randomly re-initializes

all weights of the model in a cascading manner (layer af-

ter layer). The second test independently randomizes one

layer at a time, while keeping all other layers fixed. In both

cases, we compare the resulting explanations obtained by

using the model with random weights to those derived from

the original weights of the model.



J.1.1. Cascading Randomization

The cascading randomization method involves the random-

ization of a model’s weights, starting from the top layer and

successively moving down to the bottom layer. This pro-

cess leads to the randomization of the weights from the top

to the bottom layers. Figure 15 presents the Spearman cor-

relation between the original explanation map obtained by

SLOC and the original (pretrained) model and the explana-

tion map obtained by SLOC and each of the cascade ran-

domization versions of the original model. The markers on

the x-axis are between ‘0’ and ‘16’, where x = k means

that the weights of the last k layers of the model are ran-

domized. At x = 0 there is no randomization, hence the

correlation with the original model is perfect. Starting from

x = 1 (marked by the horizontal dashed line) and up to

x = 16, the graph depicts a progressive cascade randomiza-

tion of the original model. We observe that randomizing the

weights starting from the top layer reduces the correlation

with the explanation map of the original model to nearly

zero. This behavior showcases the sensitivity of SLOC to

the model’s parameters - an expected and desired property

for any explanation method [3].

Figure 16 displays a representative example of explana-

tion maps (bottom) and their overlay to the original image

(top), illustrating the cascading randomization process. The

first column presents explanation maps produced by SLOC

and the original model, while the rest of the columns present

explanation maps produced by SLOC and cascading ran-

domized models, where the number i above each column

indicates that the explanation map is produced by a model

in which the weights of the last i layers were randomized.

It is evident that the quality of produced explanation maps

significantly degrades as more and more layers are set with

random weights.

J.1.2. Independent Randomization

We further consider another version of the model’s param-

eters randomization test, in which a layer-by-layer random-

ization is employed, one layer at a time. In this test, we

aim to isolate the influence of the randomization of each

layer, hence randomization is applied to one layer’s weights

at a time, while all other layers’ weights are kept identical

to their values in the original model. This randomization

methodology enables comprehensive evaluation of the sen-

sitivity of the explanation maps w.r.t. each of the model’s

layers.

Figure 15 presents results for the independent random-

ization tests. At x = 0 no randomization was applied and

the correlation to the original model is perfect. For x = i

(i > 0) the graph indicates the correlation of the original

model with a model in which only the weights of the i-th

penultimate layer were randomized while the weights of all

other layers were kept untouched. We observe that the cor-

Figure 15. VGG-16 Layer Parameter Randomization: This fig-

ure illustrates two types of layer randomization types: Orange

(Independent Layer Randomization) shows the randomization

process applied independently to each layer of the model, while

the remaining weights are kept fixed at their original values. Blue

(Cascading Randomization) depicts the sequential randomiza-

tion of layer weights, starting from the last layer and progress-

ing towards a selected layer. The x-axis represents the layer in-

dex, which, for cascading randomization, also corresponds to the

number of layers being randomized. The y-axis shows the av-

eraged Spearman rank correlation between the explanation maps

produced by SLOC using the original model and the model with

randomized weights. The first data point at x = 0 corresponds to

no randomization (the original model), where the correlation be-

tween the explanation maps is 1.0. The dashed line indicates the

point where randomization begins. We observe that randomizing

even a single layer in either approach reduces the average corre-

lation to nearly zero. This is a desired outcome, confirming that

SLOC passes the sanity check. For further details see Secs. J.1.1

and J.1.2.

relation values are effectively zero across all layers which

indicates SLOC’s sensitivity to weight randomization in

each layer separately. This property is a desired property

for an explanation method, as it indicates the method’s sen-

sitivity to each of the model’s layers, independently. Fi-

nally, Fig. 17 presents a qualitative example in the same

fashion as Fig. 16, this time for the independent randomiza-

tion test. We observe that the quality of all explanation maps

produced by a randomized version of the model differs sig-

nificantly from the original explanation map. We conclude

that SLOC successfully passes both types of parameter ran-

domization tests.

J.2. Data Randomization Test

The data randomization sanity test is a method used to as-

sess whether an explanation method is sensitive to the label-

ing of the data used for training the model. This is done by



Figure 16. Cascading Randomization on VGG-16 (ImageNet): The figure presents the original explanations (first column) for the

‘Christmas stocking’ class. The progression from left to right illustrates the gradual randomization of network weights up to the layer

number indicated at the top of each column, starting from the last layer. The second row displays the resulting saliency maps, while the

first row shows the saliency maps overlaid on the original image. We observe that randomizing even just the top layer significantly disrupts

the explanation. This behavior is desired, as it demonstrates that SLOC passes the sanity check. For further details, see Sec. J.1.1.

Figure 17. Independent Randomization on VGG-16 (ImageNet): Similar to Figure 16, this example randomizes each specific layer

independently, while the remaining weights are retained at their original values. We observe that randomizing any single layer significantly

disrupts the produced explanation, confirming that SLOC passes the sanity check.

Figure 18. Parameter and Data Randomization Tests: Spear-

man rank correlation box plots for SLOC with the VGG-16 model.

comparing the explanation maps produced by the explana-

tion method for two models with identical architecture that

were trained on two different datasets: one with the origi-

nal labels and another with randomly permuted labels. If

the explanation method is sensitive to the labeling of the

dataset, we would expect the produced explanation maps to

differ significantly between the two cases. However, if the

method is insensitive to the permuted labels, it indicates that

it does not depend on the relationship between instances and

labels that exists in the original data. To conduct the data

randomization test, we permute the training labels in the

Figure 19. Sanity Checks: Rows 1 and 2 present the SLOC results

for the parameter randomization and data randomization tests on

images of the classes “jellyfish” and “American alligator”, respec-

tively. From left to right: the original image, the explanation map

produced by SLOC with the trained model, the explanation map

produced by SLOC with the untrained model (where the model’s

weights are randomly initialized without further training), and the

explanation map produced by SLOC with a model trained on ran-

dom labels.

dataset and train the model to achieve a training set accuracy

greater than 95%. Note that the resulting model’s test accu-

racy is never better than randomly guessing a label. We then

compute explanations on the same test inputs for both the

model trained on true labels and the model trained on ran-

domly permuted labels. Figure 18 presents two box plots,

one computed for the Spearman correlation values obtained

for the parameter randomization test (cascading version),

and another for the data randomization test. We can see that

the correlation values are very low indicating SLOC’s sen-



sitivity to both parameter randomization and data random-

ization. Specifically, we conclude that SLOC successfully

passes the data randomization test.

Finally, Fig. 19 presents additional qualitative examples

for both tests. The first row shows two explanation maps

produced by SLOC w.r.t. the “jellyfish” class. We see

that when SLOC utilizes an ImageNet pretrained VGG-16

model, it produces a focused explanation map (around the

cat), but when applying SLOC to the same model with ran-

dom weights, or to the model trained with random-labels,

it fails to detect the jellyfish in the image. The second row

shows a similar example for class “American alligator”.

K. Motivation Formalization

In this section, we formalize the motivation for SLOC as

outlined in 3.1. Notably, the following setting and its as-

sumptions are simplified and do not reflect real-world con-

ditions; they serve solely to illustrate the underlying motiva-

tion. Importantly, SLOC does not necessitate these assump-

tions in practice and its effectiveness is rigorously validated

through extensive experiments.

Overview

Our setting involves an image x with an object of interest

that drives the model’s prediction of class y. We demon-

strate that by enforcing local-completeness across a set of

sub-maps, we can derive an attribution map that highlights

a compact region containing the object of interest, thereby

ensuring faithfulness.

The set of sub-maps is represented by corresponding bi-

nary masks M. For a given attribution map a
y
x and binary

mask mi, their dot product ayx ·mi yields the sum of attribu-

tions in the corresponding sub-map. We define r(x◦mi)[y]
as the model response for class y on the masked image.

Local-completeness is satisfied for the sub-map correspond-

ing to mi when these two terms are equal.

Our framework operates under the following simplifying

assumptions:

• The mask set M comprises only masks that either com-

pletely preserve or completely remove the object of inter-

est.

• When the object is preserved, the model response equals

R; otherwise, the response is 0.

• The set of masks includes a mask that preserves the entire

image.

An ideal attribution would precisely highlight the object

of interest. Consider the intersection region defined by the

element-wise product of all masks that preserve the object,

along with the complement of all masks that delete the ob-

ject. This intersection region necessarily contains the ob-

ject of interest. Furthermore, as the number of sub-maps

increases, the salient regions become more precisely de-

fined, potentially converging toward the ideal attribution in

our setting.

Now consider an attribution map that assigns a total attri-

bution of R within this intersection area and zero values out-

side it. This attribution satisfies local-completeness for all

sub-masks corresponding to masks in M. For masks pre-

serving the object, the corresponding sub-map contains the

intersection, yielding an attribution sum of R. For masks re-

moving the object, the mask and intersection are mutually

exclusive, yielding an attribution sum of 0.

Moreover, we prove that any attribution obtained by en-

forcing local completeness for all corresponding sub-maps

and ensuring all attribution values are non-negative can have

positive values only within the intersection region. We

prove this by contradiction. Assume there exists a pixel

outside the intersection region for which the attribution is

positive. For such a pixel outside the intersection, one of

two cases must hold:

1. There exists a preserving mask that does not include this

pixel, or

2. There exists a deleting mask that does include this pixel.

(Otherwise that pixel is in the intersection region).

In the first case, consider the mask that preserves the en-

tire image. The attribution sum for this mask equals R by

local-completeness. However, the attribution map contains

both the contributions from the sub-map corresponding to

the preserving mask (which sums to R) and the positive at-

tribution of the pixel outside the intersection. This would

make the total attribution sum strictly greater than R, vio-

lating local-completeness for the full-image mask — a con-

tradiction.

In the second case, for a deleting mask that includes the

pixel with positive attribution, the sum of attributions within

this mask would be greater than zero. However, since this is

a deleting mask, local-completeness requires the attribution

sum to be zero—another contradiction.

Therefore, a non-negative attribution map satisfying

local-completeness must assign zero attribution to all pix-

els outside the intersection region, with a total sum of R

inside this region.

It’s worth noting that our formulation imposes no con-

straints on the distribution of attribution within the intersec-

tion region. In the absence of additional information, dis-

tributing attribution uniformly is a reasonable choice. This

insight motivates the incorporation of Total Variation Loss

in the SLOC optimization framework, which naturally pro-

motes spatial coherence in the attribution map.

Lemma:

Let x ∈ R
n be an image, and let p be a set of pixels that

constitute an object of interest in the image, belonging to

class y. Let r(·)[y] denote the model response for class y,

and let mp ∈ {0, 1}n denote a binary mask that defines the

set of pixels p. Let M ¢ {0, 1}n be a set of N binary masks



such that:

1. M = Ms ∪Md

2. mi ◦ mp = mp ' r(x ◦ mi)[y] = R, ∀mi ∈
Ms; Ms = {m1, ...,mk} - masks that completely

preserve p.

3. mj ◦ mp = 0n ' r(x ◦ mj)[y] = 0, ∀mj ∈
Md; Md = {mk+1, ...,mN} - masks that com-

pletely delete p.

4. m1 = 1n ∈ Ms - We denote m1 as the mask that pre-

serves the entire image.

where ◦ denotes the element-wise product, and 0n and 1n

represent vectors of length n with all elements equal to 0

and 1, respectively.

Let ayx be an attribution map such that:

a
y
x ·mI = R, a

y
x ◦ (1−mI) = 0n (10)

where:

mI = m1 ◦ · · · ◦mk ◦ (1−mk+1) ◦ · · · ◦ (1−mN ) (11)

mI represents the intersection of the masks that preserve

p with the inversion of the masks that delete p. In other

words, the total attribution within mI sums to R, with all

attributions outside mI being zero.

Then:

1. Completeness is satisfied for all sub-maps induced by

M:

a
y
x ·mj = r(x ◦mj)[y], ∀mj ∈ M

2. Uniqueness of mI as the maximal subregion with

nonzero attribution: Consider any non-negative attri-

bution b
y
x that satisfies completeness for all sub-maps

(i.e., by
x ·mj = r(x◦mj)[y], ∀mj ∈ M and b

y
x g 0n).

Then we have:

(1−mI) ◦ b
y
x = 0n

This implies that b
y
x has non-zero attribution only

within the region defined by mI .

Proof:

Part 1: Completeness for all sub-maps

For masks mi ∈ Ms:

a
y
x ·mi =

n∑

u=1

a
y
x[u] ·mi[u] (12)

=
∑

mI [u]=1

a
y
x[u] ·mi[u] +

∑

mI [u]=0

a
y
x[u] ·mi[u]

(13)

=
∑

mI [u]=1

a
y
x[u] ·mi[u] +

∑

mI [u]=0

0 ·mi[u]

(14)

=
∑

mI [u]=1

a
y
x[u] ·mi[u] (15)

=
∑

mI [u]=1

a
y
x[u] ·mI [u] (16)

= a
y
x ·mI = (17)

= R = r(x ◦mi)[y] (18)

Transition (14) follows from (10). Since a
y
x[u] · (1 −

mI [u]) = 0 for all u ∈ 1, . . . , n, it follows that if mI [u] =
0, then a

y
x[u] = 0. Transition (16) follows from the defini-

tion of mI , if mI [u] = 1, then for any mi ∈ Ms, we have

mi[u] = 1 as well, hence mI [u] = mi[u]. Transition (18)

follows directly from (10).

For masks mj ∈ Md:

a
y
x ·mj =

n∑

u=1

a
y
x[u] ·mj [u] (19)

=
∑

mI [u]=1

a
y
x[u] ·mj [u] +

∑

mI [u]=0

a
y
x[u] ·mj [u]

(20)

=
∑

mI [u]=1

a
y
x[u] · 0 +

∑

mI [u]=0

a
y
x[u] ·mj [u]

(21)

=
∑

mI [u]=1

a
y
x[u] · 0 +

∑

mI [u]=0

0 ·mj [u] (22)

= 0 = r(x ◦mj)[y] (23)

Transition (21) follows from the definition of mI in (11),

which implies that if mI [u] = 1, then mj [u] = 0. Simi-

larly, transition (22) follows from (10): since a
y
x[u] · (1 −

mI [u]) = 0, it follows that if mI [u] = 0, then a
y
x[u] = 0.

Part 2: Nonzero attribution only within the intersection

Given that:

b
y
x g 0n (24)

and

b
y
x ·mj = r(x ◦mj)[y], ∀mj ∈ M (25)

we proceed by contradiction.



Suppose there exists v ∈ {1, . . . , n} such that:

mI [v] = 0 ' b
y
x[v] > 0 (26)

By the definition of mI (11), there are two possible cases:

1. There exists a mask mq ∈ Ms such that mq[v] = 0, or

2. There exists a mask mq ∈ Md such that mq[v] = 1.

Case 1: If there exists a mask mq ∈ Ms such that mq[v] =
0, then:

b
y
x ·m1 =

n∑

u=1

b
y
x[u] (27)

=
∑

mq [u]=1

b
y
x[u] +

∑

u=v

b
y
x[u] +

∑

u ̸=v'mq [u]=0

b
y
x[u]

(28)

g
∑

mq [u]=1

b
y
x[u] +

∑

u=v

b
y
x[u] (29)

= b
y
x ·mq + b

y
x[v] (30)

= r(x ◦mq)[y] + b
y
x[v]+ (31)

= R+ b
y
x[v] (32)

> R (33)

= r(x ◦m1)[y] = b
y
x ·m1 (34)

which is a contradiction. Transition (29) follows directly

from the nonnegativity of by
x (24). Transition (31) follows

from b
y
x satisfying local completeness (25). Transition (32)

follows since mq ∈ Ms. Transition (33) follows from the

positivity of by
x[v] (26)

Case 2: If there exists a mask mq ∈ Md such that mq[v] =
1, then:

b
y
x ·mq =

n∑

u=1

b
y
x[u] ·mq[u] (35)

g b
y
x[v] ·mq[v] (36)

= b
y
x[v] · 1 (37)

> 0 (38)

= r(x ◦mq)[y] = b
y
x ·mq (39)

which is a contradiction as well. Transition (36) follows

from the nonnegativity of by
x (24). Transition (38) follows

from the positivity of by
x[v] (26).

L. Additional Axioms

We have demonstrated how SLOC harnesses the concept of

completeness locally as a guiding principle to produce high-

quality explanations. We now extend this discussion to in-

clude additional axioms relevant to attributions and attribu-

tion methods. By axioms, we refer to the desired properties

of either the method or the explanation.

Sundararajan et al. [65] discuss the following addi-

tional axioms: Sensitivity, Implementation Invariance,

and Linearity. Erion et al. [36] extend this discussion by

introducing the Smoothness and Sparsity as additional ax-

iomatic attribution priors.

Two definitions are provided for Sensitivity: (a) For ev-

ery input and baseline that differ in one feature but have dif-

ferent predictions, the differing feature must receive a non-

zero attribution. (b) If the model output does not depend on

an input, the attribution for that input must always be zero.

The Implementation Invariance axiom is satisfied when

attributions remain identical for functionally equivalent net-

works. Two networks are considered functionally equiva-

lent if their outputs are identical for all inputs.

The Linearity axiom is satisfied if, when two models are

composed linearly to form a third model,

f3(x) := a · f1(x) + b · f2(x),

the attribution of the composed model is the weighted sum

of the attributions for f1 and f2, with weights a and b, re-

spectively.

The Smoothness and Sparsity priors are not binary traits

that are either satisfied or violated but rather quantitative at-

tributes for which loss terms can be defined. This approach

aligns with our definition of the completeness-gap (Eq. 2)

as a soft measure of completeness.

As a black-box method, SLOC naturally satisfies the

Implementation Invariance axiom. It relies solely on the

model’s responses to perturbed images and is entirely ag-

nostic to the model’s internal implementation. While the

attributions depend on the randomly selected masks, these

masks can remain fixed and reused across runs.

Regarding the Smoothness and Sparsity priors, SLOC

incorporates L1 and TV regularization terms into its loss

function (Eq. 4), alongside the completeness-gap term

which results in smoother and sparser explanations accord-

ingly. When choosing between explanations with similarly

low completeness gaps, we prioritize those that are smooth

and sparse.

SLOC does not inherently guarantee satisfaction of the

Sensitivity or Linearity axioms. Addressing these limita-

tions to further enhance the quality of explanations is left

for future research.

M. Limitations and Future Work

SLOC relies on the generation of random masks and per-

turbations to produce high-quality explanations for image

classification models. While effective, this approach has po-

tential for improvement through more sophisticated mask-

generation techniques that could further enhance the accu-

racy and robustness of the explanations. We outline several

promising directions for future research to explore and build

upon the current strengths of SLOC.



One area for improvement is the development of more

advanced methods for mask selection. By incorporating

information from previous perturbations and their corre-

sponding model responses, it may be possible to guide the

generation of subsequent masks in a more informed and tar-

geted manner. However, this introduces a trade-off: lever-

aging such information could make the mask generation

process more sequential, thereby reducing its parallelizabil-

ity. Future research could explore this trade-off and inves-

tigate strategies to balance informed mask generation with

computational efficiency.

Another promising direction involves the use of progres-

sive multi-resolution perturbations—starting with coarse

masks composed of large patches (low resolution) and grad-

ually refining the analysis by decreasing patch size in re-

gions identified as influential. This hierarchical approach

may lead to more accurate and interpretable explanations.

In parallel, incorporating image-specific features such

as segmentation-based masks represents an alternative ap-

proach. Instead of relying on randomly positioned patches,

masks could be constructed using more meaningful seg-

ments derived from a segmentation algorithm, potentially

aligning the perturbations more closely with the structure

of the input image and improving the interpretability of the

resulting attributions.

Another area that worth further investigation pertains to

the SLOC optimization phase. In this phase (Sec. 3.2),

SLOC evaluates the completeness-gap across all masks at

every optimization step using gradient descent. Future work

could explore the use of stochastic gradient descent, where

a subset of masks is considered at each step. Introducing

stochasticity in the optimization phase might improve con-

vergence, while still allow for the generation of masks and

responses in advance, enabling parallelization to be lever-

aged.

By exploring these avenues, SLOC can be further refined

to produce even more accurate, reliable, and robust expla-

nations.

Last but not least, as part of our future research we plan

to investigate the applicability of SLOC to additional do-

mains, such as natural language processing, audio models,

and recommender systems. Yet, applying the concept be-

hind SLOC to new domains would require necessary adap-

tations to support different types of input representations.


