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1. Additional Qualitative Results

In this section, we provide qualitative examples supplemen-
tary to those shown in Fig. 2 of the main paper. Fig. | show-
case an example from LRR-Sim dataset, while Figs. 2 and 3
present two examples from the aiMotive dataset. The layout
follows the same structure as Fig. 2 in the main paper. For
each example, the single-frame point cloud (without aggre-
gation) is shown on the left, standard aggregation over 0.7s
is displayed in the middle, and the results of DoppDrive are
presented on the right. Reflection points from dynamic and
static objects are plotted in blue and orange, respectively.
Detected bounding boxes using SMF [5] are marked in blue,
while ground truth bounding boxes are marked in pink.

In all the examples, it is evident that without aggregation,
the reflection points are sparse, often with only one or two
points per object, and sometimes none, leading to missed
object detections. Standard aggregation results in signifi-
cant scatter of reflection points from dynamic objects (blue
points). In contrast, DoppDrive produces dense reflection
points with minimal scatter, resulting in detections that are
better aligned with the annotations compared to standard
aggregation.

2. Computational Complexity Evaluation

We next assess the computational overhead of DoppDrive,
implemented according to Algorithm 1 in the main paper,
with ¢(@) precomputed for each 0 and accessed via a lookup
table. Tab. 1 compares the runtime of SMF [5] object de-
tection with DoppDrive aggregation, standard aggregation,
and no aggregation on an NVIDIA Tesla V100 SXM2 32
GB. The results show that DoppDrive’s aggregation time
is significantly smaller than the detection time, contribut-
ing minimal runtime overhead and making it suitable for
real-time applications. DoppDrive slightly reduces detector
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runtime compared to standard aggregation by aggregating
fewer points due to its dynamic aggregation duration.

Aggregation | Aggregation | Detection Total
Method Time [ms] | Time [ms] | Time [ms]
None 0 66.4 66.4
Standard 1.4 67.8 69.2
DoppDrive 2.0 67.5 69.5

Table 1. Runtime assessment of DoppDrive using the SMF de-
tector [5]. The columns, from left to right, show the point cloud
aggregation methods, aggregation runtime, object detection run-
time with the aggregated points, and the total runtime, calculated
as the sum of aggregation and detection runtimes.

3. Impact of Point Elimination

DoppDrive limits integration duration to suppress points
with high tangential dispersion, resulting in point elimi-
nation relative to fixed-duration aggregation. This subsec-
tion evaluates the elimination rate and its impact on perfor-
mance.

Tab. 2 breaks down the AP gains and the average per-
centage of eliminated dynamic points per frame—relative to
fixed-duration aggregation with radial compensation (rows
8 vs. 6 in Table 3 of the main paper)—across heading, ve-
locity, and range bins. Elimination reaches up to 16%, in-
creasing at short ranges, higher speeds, and more tangential
headings. While the overall elimination rate is modest, it
has a noticeable impact on performance, with larger gains
observed at higher elimination levels.

4. Calculation of g(¢:)

In Eq. 10 of the main paper, we provide the expression for
g(63,), which is defined as:
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Figure 1. Qualitative example from LRR-Sim shown in bird’s-eye view. The point cloud of dynamic objects is shown in blue, while that of
static objects is shown in orange. SMF [5] detections are represented by blue bounding boxes, and ground truth bounding boxes are shown
in pink. The left figure depicts results without aggregation, the middle figure shows standard aggregation with ego-motion compensation,

and the right figure shows the results of DoppDrive.
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Figure 2. Qualitative example from aiMotive shown in bird’s-eye view. The point cloud of dynamic objects is shown in blue, while that of
static objects is shown in orange. SMF [5] detections are represented by blue bounding boxes, and ground truth bounding boxes are shown
in pink. The left figure depicts results without aggregation, the middle figure shows standard aggregation with ego-motion compensation,

and the right figure shows the results of DoppDrive.

where f% () represents the probability distribution func-
tion of the heading angle «. In this section, we explain how
to compute g(6?) as defined by Eq. (1).

Fig. 4 shows the probability density function (PDF) of
«, derived from annotations in the aiMotive dataset. The
distribution is sharply concentrated around zero, with sig-
nificantly smaller secondary peaks near £90°. To model

this distribution, we fit a truncated Laplace distribution:

fai (@) = ieXp (_Ia—u|> . ael-n/2,7/2], (2)

2 b

where we set y = 0 and b = 3.1. The minor peaks
near £90° were neglected in this approximation. The fit-
ted Laplace distribution is plotted in black in Fig. 4. As
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Figure 3. Qualitative example from aiMotive shown in bird’s-eye view. The point cloud of dynamic objects is shown in blue, while that of
static objects is shown in orange. SMF [5] detections are represented by blue bounding boxes, and ground truth bounding boxes are shown
in pink. The left figure depicts results without aggregation, the middle figure shows standard aggregation with ego-motion compensation,

and the right figure shows the results of DoppDrive.

Range [m] [0,40] [40,80] [80,120] [120, 160]
Elim.%/AP Gain 16.6/5.6 12.4/4.6 10.9/2.9 10.5/2.7
Abs. Velocity [m/s] [0,12] [12,24] [24,36] [36,48]
Elim.%/AP Gain 10.6/3.7 11.1/4.3 11.8/49 12.6/5.3

Abs. Heading [/]  [0,30] [30, 60] [60, 120] [120, 180]
Elim.%/AP Gain ~ 10.0/3.9 11.0/4.1 15.5/5.1 11.0/4.0

Table 2. Point elimination rate (blue) and AP gain (green) over ra-
dial compensation with fixed aggregation duration and no elimina-
tion, at different range, velocity, and heading intervals (aiMotive).

shown, it aligns well with the main mode of the empirical
distribution.

Based on this, the integral in Eq. (1) can be evaluated
numerically, either using the empirical histogram or the
Laplace approximation for fa?; (). For the experiments in
the main paper, we used the Laplace approximation to pre-
compute g(0}) over a grid of #}, values and stored the results
in a look-up table for efficient use in Algorithm 1.

Using the full multi-modal histogram of « from Fig. 4
to compute the integral numerically yielded a slight per-
formance improvement. Specifically, the SMF detector [5]
achieved a 0.4-point increase in Average Precision on the
aiMotive dataset.
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Figure 4. Probability distribution function (PDF) of reflection
points’ heading directions used in calculating g(6%). The empir-
ical PDF from aiMotive dataset annotations is shown in orange,
with the Laplace distribution fit plotted in black.

5. Supplementary Details on LRR-Sim

In this section, we provide additional details about LRR-
Sim, the Long-Range Radar Simulation dataset introduced
in Section 5 of the main paper. LRR-Sim focuses on high-



way scenarios with long-range vehicles of three types: ’car,’
’van,” and ’truck’. The number of vehicles as a function of
range in the dataset is presented in Fig. 5, which indicating
that vehicle ranges extend up to 300m, with 17.5% of the
vehicles located beyond 175m. The distribution of vehi-
cle types in the dataset is illustrated in Fig. 6. It is observed
that 65.7% of the vehicles are of type *car,” representing rel-
atively small-sized vehicles, while 17.9% are medium-sized
’vans,” and 16.5% are large vehicles of type ’truck.’

The specifications of the simulated radar are detailed in
Tab. 3. These specifications align with those of high-end
long-range automotive radars [1-3], offering a detection
range of up to 300m and high resolution in range, angle,
and Doppler.

The simulated radar features 12 transmit and 16 receive
antennas and uses a fast chirp FMCW waveform. The
highway environment and vehicles were modeled using the
CARLA simulation platform [4], incorporating dense re-
flection points from objects. Ray tracing was performed
to compute interactions between the antennas and reflection
points in the environment. The received signal at each an-
tenna was the sum of the transmitted waveforms echoed by
all reflection points in the scene, with adjustments for in-
tensity and delay determined by each reflection point’s in-
tensity and distance. To obtain the radar reflection inten-
sity spectrum in the range, Doppler, and angle dimensions,
standard radar signal processing techniques were applied
to the received signals. This included range FFT, Doppler
FFT, and azimuth-elevation beamforming. Finally, the radar
point cloud was generated by identifying spectrum peaks
that exceeded a local noise threshold, using the CFAR algo-
rithm [8]. A video demonstration of LRR-Sim is included
our GitHub'.

Radar parameter

Maximal range 300m
Range resolution 0.15m
Azimuth field of view +55°
Azimuth resolution 1.2°
Elevation field of view +20°
Elevation resolution 2°
Doppler resolution 0.13m/s
Doppler range [—80,30]m/s

Table 3. Specifications of radar used in LRR-Sim

6. Detectors Implementation Details

For the performance evaluation of DoppDrive in Section 6
of the main paper, we used four detectors: Radar PillarNet
(RPNet) [9], SMURF (SMF) [5], Nvradarnet (NVR) [7],

IThe LRR-Sim dataset is available at: https://github.com/
yuvalHG/LRRSim
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Figure 5. Number of vehicles by range in the LRR-Sim dataset.
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Figure 6. Distribution of vehicle types in the LRR-Sim dataset.

and K-Radar (KRD) [6]. Details of their implementation are
outlined below. For all methods, ego-speed Doppler com-
ponents were removed from the Doppler measurements,
and the input features for each point included the x,y, z
coordinates, Doppler, reflection intensity, and time index
for aggregated inputs. RPNet, SMF, and NVR used a
0.25mx0.25m input grid resolution in the X-Y plane, while
KRD employed a 0.4m x 0.4m x 0.4m 3D grid resolution.
Three anchor sizes were used to cover small, medium, and
large vehicles, each with two orientations: 0° and 90°. For
SMF, we used two KDE blocks with bandwidths R1 = 1m
and R2 = 2m. We apply radar point cloud augmenta-
tions, including flips, slight zoom in/out, and intensity jit-
ter. Translations and rotations were excluded to prevent
misalignment of Doppler measurements.

7. Vertical Velocity Extension

In automotive scenarios, vertical displacement over short
aggregation durations is typically negligible. Therefore, in
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deriving DoppDrive, we assume zero vertical velocity and
focus solely on longitudinal and lateral motion. However,
DoppDrive can be extended to account for vertical veloc-
ity if required. In this case, only the duration constraint in
line 8 of Algorithm 1 is affected. The function g would be
updated to incorporate elevation angle and vertical heading
distribution, mitigating dispersion in both vertical and tan-
gential directions.
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