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We discuss limitations in Sec. A. We then include details on
the architecture (Sec. B), training and inference (Sec. C),
and evaluation (Sec. E). We highly encourage the reader to
visit the attached Website for extensive qualitative results
and comparisons.

A. Limitations

Our base video backbone is a low-resolution and low-
fps RGB model coupled with a high-resolution upsampler
model. While the model achieves state-of-the-art V2A and
A2V performance, leveraging a large high-resolution latent
video model may further improve performance. Exploring
model scaling to further improve feature quality is an excit-
ing avenue for future work. Additionally, the feature rein-
jection alters activations in the conditioning modality gen-
erator. While beneficial, it introduces additional compute
at each sampling step as caching prior activations becomes
infeasible. Step distillation techniques reduce this effect by
reducing the number of sampling steps and constitute an or-
thogonal line of work.

B. Architecture Details

We base our audio and video backbones on a shared
DiT [65] architecture. For the video model, We use an

pixel-based flow matching model with an initial patchifica-
tion operation of 2 x 2 using a patch dimension of 1024. We
employ 24 DiT blocks. Each DiT block is composed of a
self attention operation, followed by a cross attention opera-
tion attending to text conditioning signals, and a final MLP.
We use 16 heads for each attention operation and a hidden
dimension of 4096 for the final MLP. Adaptive layer nor-
malization is used within each block to condition the model
on the flow time ¢. Each attention operator makes use of
QK-Normalization [22] to improve training stability when
trained in BF16 precision, and 3D RoPE [76] positional em-
beddings.

For the audio model, we employ a latent model with 24
DiT blocks with hidden dimension of 1024 for the patches.
We use 16 attention heads for each self-attention and cross-
attention operation and an MLP hidden size of 4096. We
follow [27] for encoding the audio and converting the gen-
erated Mel-spectrograms to waveform. Both models have
576M trainable parameters.

The Fusion blocks similarly have a hidden dimension of
1024 and 16 heads for the self-attention operation. Their
final MLP layers have a hidden dimension of 4096. Each
Fusion block has 23.25M parameters and we use 8 Fusion
blocks for all of our experiments.

C. Training and Inference Details

This section presents additional details on training and in-
ference and discusses training and inference time.

C.1. Training Details

For all training phases, we train our models using the
AdamW optimizer with a learning rate of 3e-4, beta factors
of 0.9 and 0.99, epsilon of 1e-8, a weight decay of 0.01, and
a 10,000-step warmup.

The base video model is trained for 250,000 steps on an
automatically-captioned internal dataset with a total batch
size of 512 on 16 A100 GPUs. The base audio models
are trained for 100,000 with a total batch size of 1024 on
8 A100 GPUs. We drop text condition 10% of the time to
enable classifier-free guidance (CFG) [31] during inference.

The fusion blocks are trained for 50,000 steps on 16
A100 GPUs with a batch size of 256. Ablation experi-
ments are trained on 8 A100s with a total batch size of 128.
We drop the generated modality text prompt (e.g. audio text
prompt in V2A task) 50% of the time and the conditioning
modality text prompt (e.g. video text prompt in V2A task)
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576M Audio Backbone | 2.48 15.87 8.97 0.188 0.198 41.74
288M Audio Backbone | 3.02 17.22 9.07 0.168 0.178 40.60

Table 5. Quantitative comparison of AV-Link V2A trained with
various Audio backbone sizes.

20% of the time. For all experiments, both the audio and
video backbone are kept frozen unless otherwise specified.

C.2. Inference details

We perform inference starting from pure Gaussian noise for
the modality to generate and use the model’s velocity esti-
mates together with an Euler sampler to progressively trans-
form the noise to the clean generated sample. We found
using classifier-free guidance on the conditioning modality
to be instrumental in obtaining good multimodal alignment.
When conditioning on more than one modality (e.g. video
and audio text prompt), we drop both conditions simulta-
neously to compute the unconditional signal. In all of our
experiments, we used 64 sampling steps and a CFG weight
of 5.0. All of our generated video results are evaluated at
the 512 x 288 pixels resolution.

C.3. Training and Inference Time

Training. The base video model was trained for 25 days,
while the audio model and the fusion blocks were trained
for 8 and 4 days, respectively. All experiments utilized Py-
Torch Fully Sharded Data Parallel (FSDP) [104] for effi-
cient distributed training.

Inference. We measure a throughput of 27.85s per sam-
ple using a batch size of one on an A100 to perform 64
sampling steps for both the A2V and V2A tasks. This is
a limitation of our method in the V2A task since it re-
sults in a slower sampling time compared with previous
approaches [57, 103]. We make, however, two important
considerations. First, a major use case for V2A is the soni-
fication of generated soundless videos. Such generation,
when performed by state-of-the-art large-scale text-to-video
generators usually takes several minutes. Second, since our
method relies on a flow model, distillation methods similar
to the ones adopted by previous approaches [89] can signif-
icantly improve inference time by performing sampling in a
few steps. We regard this direction as an interesting avenue
for future work that is orthogonal to ours.

D. Additional Experiments

D.1. Freezing Audio and Video Generators

A core motivation behind AV-Link is to connect frozen au-
dio and video generators to enable cross-modal generation
without compromising the quality of single-modal genera-
tion. However, previous work showed benfitis from finetun-

V2A (VGGSounds)

Setting T2A (Clotho) |T2V (VGGSounds)
ISt IB-AV?T Ons. Acct

ISt CLAPSIM?T|FVD] CLIPSIM{

Frozen Backbones 9.01 244 1023.9 26.5 8.97 0.198 41.74
FT Audio Backbone 7.05 18.6 1023.9 26.5 9.82  0.207 41.88
FT Audio&Video Backbone | 5.48 14.9 8930.1 21.8 17.04 0.104 32.04

Table 6. Quantitative comparison of various training paradigms of
AV-Link for the V2A task
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Figure 6. Comparison between different parametrizations for the
Logit-Normal training distributions p; for the flow timestep t.
When the location (i.e. mean of the normal distribution) is shifted
towards higher noise levels, we observe faster model convergence.

ing the audio generator for the video-to-audio task [57, 103]
using full finetuning or LORA methods [82]. Here, we
explore the effect of full fine-tuning of the audio or video
backbone for V2A generation. Tab. 6 reports three training
paradigms of AV-Link, trained for 35k iterations. Finetun-
ing the Audio backbone improves V2A but hurts T2A per-
formance on out-of-distribution benchmark (Clotho). Fine-
tuning both backbones quickly degrades the conditioning
signal (i.e. video activations), significantly reducing perfor-
mance on all tasks, since the video backbone loses its strong
features. Similar conclusions can be drawn from finetuning
the video backbone for A2V. While finetunning is feasible
with AV-Link, it prevents the creation of a modular and self-
contained framework for T2V, T2A, V2A, and A2V.

D.2. Heterogeneous Audio-Video Backbones

While we base our main experiments on homogeneous au-
dio and video backbone, AV-Link does not require the audio
and video backbones to be similar, as the Fusion Blocks can
be configured to connect blocks at non-symmetric indices.
We demonstrate this by fine-tunubg the base audio back-
bone with half of its blocks removed (i.e. 288M parame-
ters) for 50k steps while keeping the full video backbone
(576M parameters) unchanged. Then, the V2A framework
is trained with N = 8 Fusion Blocks that connect block in-
dices (3N, [3N]) of the video and audio models, respec-
tively. Tab. 5 shows that performance scales gracefully to
the reduced audio capacity, showing that AV-Link is effec-
tive in connecting large-scale video generator with a smaller
audio generator.



D.3. Noise Sampling Scheduler

For training the video and audio model, we use the Logit-
Normal distribution p; for the flow timestep ¢ with loca-
tion 0.0 and scale 1.0, following [22]. When training the
Fusion block, which builds on pretrained audio and video
backbones, we adopt a different approach. We noticed that
early diffusion steps are the most critical for correctly fol-
lowing the conditioning modalities. Toward the end of the
sampling path, however, the model relies more on the gen-
erated modality signal alone. Therefore, since multimodal
alignment is the main purpose of the Fusion blocks, we
shift the flow time training distribution to sample from more
noisy steps. More specifically, Instead of parametrizing
the normal distribution component as NV (0, 1), we set it to
N(—1,1) and observe significantly faster convergence as
shown in Fig. 6.

D.4. AV-Link for Joint Audio-Video Generation

A natural next step for AV-Link is joint audio-video diffu-
sion, i.e. enforcing t, = t, throughout training and sam-
pling. In practice, however, our joint model lags far be-
hind the cross-modal variants (V2A and A2V): generated
clips show little semantic or temporal coherence between
sound and videos. We suspect that there is an intrinsic bot-
tleneck. Effective denoising of one modality often requires
information that emerges only in later diffusion steps of the
other. For example, low-frequency semantic cues in audio
(the “boom” of an explosion) depend on high-frequency vi-
sual details that are resolved late in the video denoising tra-
jectory—and vice versa. This interdependence makes si-
multaneous restoration of both streams difficult, a limita-
tion shared by current joint generators [72, 87] while absent
in cross-modal pipelines [89, 103]. A more promising av-
enue may be to diffuse a single, unified audio-video latent
that captures their correlations from the outset, which we
believe is an interesting direction to explore in future work.

E. Additional Evaluation Results and Details

This section presents additional evaluation results and de-
tails. We highly encourage the reader to check out the gen-
erated audios and videos on the Website.

E.1. Baselines Selection

Below, we include details on baseline selection and infer-

ence procedures.

Video-to-Audio. We compare our method against Diff-

Foley [57], FoleyCrafter [103], Seeing and Hearing [92],

Frieren [89], and Movie Gen A2V [67].

 Frieren: We use the Frieren (reflow) model, 64 sampling
steps, CFG of 5.0, and the other recommended hyper-
parameters for inference.

* Movie Gen A2V: Since Movie Gen is a closed source
model and audio samples are released for the Movie Gen
Benchmark only, we include user studies and extensive
comparison on the Website comparing our method against
the released benchmark, showing that AV-Link achieves
superior temporal alignment.

* FoleyCrafter: We employ FoleyCrafter with default set-
tings for inference.

» Seeing and Hearing: We use the official code for V2A
and follow default sampling parameters. We exclude See-
ing and Hearing qualitative comparison without prompt
as it produces barely audible sounds in this setting.

 Diff-Foley: We use the official code and set sampling
steps to 64 and CFG to 5.0. For the rest of the param-
eters, we use the default setting.

For all of the baselines, we generate the audio at their rec-
ommended length from the full-length videos and crop it to
5.16s for a fair comparison with our method.
Audio-to-Video. To the best of the authors’ knowledge,
TempoToken [99] is the only in-the-wild A2V baseline with
publicly available code. We exclude Seeing and Hear-
ing [92] A2V results as their code is not available for this
task. Additionally, we exclude joint audio-video genera-
tion methods (see Appx. E.2) such as MMDiffusion [72],
as they were trained on the very limited Landscapes Videos
dataset [46], which contains only 928 videos and lacks gen-
eralization beyond landscape scenarios. We also exclude
sound-guided image animation methods [46, 102], as they
address a fundamentally different task.

We use the official implementation of TempoToken with
default parameters to generate 2-second videos. For the
quantitative comparison, we crop our generated videos to
2 seconds for a fair comparison with TempoToken.

E.2. Joint Audio-Video Generation Baselines

In this work, we aim to address the tasks of A2V and V2A
generation within a single framework. Some methods for
joint video-audio generation [28, 40, 50, 77, 80, 96] are ca-
pable of operating under this conditional setting.

However, due to the difficulties in jointly modeling the
audio and video modalities, these methods are often trained
on domain specific datasets: Landscapes [46] is composed
of 928 videos of natural landscapes; AIST++ [48] contains
1020 clips (5.2 hours) of dancing human sequences; Great-
estHits [63] is composed of 977 videos featuring a drum-
stick hitting objects in a scene; EPIC-SOUNDS [34] en-
compasses 117.6k clips (100 hours) of cooking-related ac-
tions; Monologues [40] features 19.1M clips of talking peo-
ple. The use of narrow distribution datasets coupled with
the limited availability of source code and pretrained check-
points limits the possibility of performing meaningful com-
parisons of joint audio-video generation on the broad data
distribution modeled by AV-Link.



In the following, we discuss the considered joint audio-
video baseline methods. MMDiffusion [72] provides
checkpoints for models trained on Landscapes [46] and
AIST++ [48] datasets only. We find that the Landscapes
checkpoint overfits to its training dataset distribution, fre-
quently replicating training samples. By analyzing 500
generated videos using the provided checkpoint, we found
that the generated videos achieved an average of 0.825
CLIP similarity between the generated videos and the top-
matching video from the training dataset. We include in
Fig. 8 examples of such overfitting. This prevents the
method from operating on videos outside these domains
and does not allow for an informative comparison. Ishii
et al. [36] provides a checkpoint trained on the Great-
estHits [63] dataset only. While trained also on the Land-
scapes [46] and VGGSound [10] datasets, no A2V or V2A
results were reported. Kim et al. [40] report results on
the Landscapes [46], AIST++ [48] and the Monologues
(talking heads) datasets with no code publicly available.
CMMD [96] report results on the AIST++ [48] and EPIC-
SOUNDS [34] datasets and do not provide code.

E.3. Additional V2A results

Fig. 7 shows additional V2A results comparing our method
to baselines. To better showcase the capabilities of AV-
Link, we record a series of in-the-wild videos that require
a high degree of temporal alignment for the audio modality
and run inference for all baselines. Our method produces
highly aligned audio results that capture the audio semantic
entailed by the visual modality, while baselines produce de-
graded results. We attribute this phenomenon to the lack of
access to visual features that are precisely aligned with the
video content. On the contrary, the use of activations from
the video generation backbone allows AV-Link to produce
precise alignment in this scenario.

E.4. User study details

We hire a team of professional annotators to perform the
user studies. A total of 50 samples are generated for each
method in the V2A and A2V tasks. We present users with
paired videos with accompanying audio generated by dif-
ferent methods, and ask them to express a preference for
one of the two based on Audio Quality, Video Quality,
paired Audio-Video Quality, Semantic Alignment and Tem-
poral Alignment between the two modalities. For the case
of V2A evaluation, we formulate instructions for annotators
for each such aspect as follows:
e Audio Quality “Which audio has the best quality? Only
listen to the audio and ignore the video content.”
¢ Audio-Video Quality “Which audio-video pair has the
best quality?”
e Semantic Alignment “Which audio is semantically
closer to the video content?”

* Temporal Alignment “Which audio is more temporally
aligned to the video content?”

The formulation of questions for the A2V case is com-

pletely symmetric. For each generated pair of samples, we

ask 5 different users to express a preference to increase the

robustness of the evaluation.
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Figure 7. Qualitative V2A results comparing our method to baselines on in-the-wild videos captured by the authors that require precise
temporal alignment. AV-Link produces audio signals that closely align to the visual modalities, while baselines often produce audio that is
unrelated or not correctly synchronized with the visual content. See the Website for more results.
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Figure 8. Examples MMdiffusion generated samples using their released checkpoint. We show that their model suffers from severe
overfitting due to training on a limited dataset of 900 landscape videos.



