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Supplementary Material

We provide additional details on:
* the annotation process (Sec. 8 ),
* the statistics of Articulate3D (Sec. 9),
e applications of Articulate3D (Sec. 10),
» experiment details and additional results (Sec. 11).

8. Annotation Process

8.1. Annotation Tool

We introduce the interface of the annotation tool used to
create Articulate3D in Fig. 6. It features instance semantic
segmentation functionalities, extended to enable connectiv-
ity annotation, as well as a view for articulation annotations.

An essential feature for the annotation of Articu-
late3D was the support both for fine-grained segmentation,
as well as for an oversegmentation-based annotation. While
the provided initial segments support fast and accurate an-
notation for big objects with flat surfaces, e.g. cabinets,
fine-grained details such as buttons, knobs, switches, etc.,
are not recognized, as seen in Fig. 7.

8.2. Annotators Training

To ensure the quality and consistency of annotations, anno-
tators underwent comprehensive training supported by de-
tailed documentation and tutorials. The preparation materi-
als included:

Segmentation Training:

* Two training videos, totaling 40 minutes, covering the
segmentation tool, illustrative examples of typical cases
and exceptions.

* Documentation with examples for all object classes in the
fixed object label list, including: (1) images of segmented
parts, (2) their corresponding connectivity graphs, and (3)
the step-by-step sequence of commands used to achieve
precise segmentation.

* A complete guide to the application’s controls and short-
cuts.

Articulation Training:

* A 15-minute training video demonstrating the articulation
annotation tool and process, with examples of rotation
and translation articulations.

* Documentation with examples of the different articulated
parts classes.

Additionally, annotators were provided with chat support
throughout the annotation process. The chat support was es-
pecially valuable during the initial review phase, allowing
annotators to resolve questions, particularly around com-

plex connectivity graphs, e.g., oven models, where controls
are physically attached to the oven door but semantically
part of the oven body.

9. Dataset Statistics

For a comprehensive overview of the annotated object and
part labels, we refer to Fig. 9 and Fig. 10, which provide
information both on the labels and on their distributions.
Distributions of the 30 most frequent labels per train and
test split are shown in Fig. 12.

We note that the dataset also includes additional labels
to address variations based on location (e.g., “cabinet” ver-
sus “wardrobe”), functional mechanisms (e.g., ”faucet han-
dle” versus “faucet ventil”), and other contextual distinc-
tions which are not captured in the provided figures. We
will include resources for mapping these additional labels
and their parent categories with the dataset release.

We also provide size information for the annotated items
(both objects and parts) in Fig. 11, where size is measured
by the faces (triangles) count of each item. Our analysis
reveals that Articulate3D includes a mix of large objects
and many smaller ones with only a few faces. This high-
lights both the high quality of the annotations in capturing
intricate details, as well as the variability within the dataset.

Our statistical analysis focuses solely on annotations
added by our annotators. Since our work builds upon the
ScanNet++ dataset [86], we ensure full compatibility be-
tween our annotations and those from ScanNet++. Unal-
tered ScanNet++ annotations (e.g., walls, floors, and so-
fas) are directly integrated into the final USD, while cer-
tain labels, such as “cabinet,” are entirely replaced by our
own annotations, as illustrated in Fig. 8. We will provide
a script merging the annotations from Articulate3D and
ScanNet++.

9.1. Segmentations Quality Evaluation

To assess the quality of our segmentation annotations,
we conducted a control experiment involving two annota-
tors. They were each tasked with re-annotating a ”control
scene”—a scene that had been previously annotated, then
reviewed, and approved by the sixth annotator. The annota-
tions were manually matched item-by-item between the two
annotators, and IoU was calculated for each matched pair.
The scene’s average IoU served as the metric for annota-
tion quality. Notably, the re-annotators were distinct from
the original annotators. We achieved an IoU of 0.93 for the
control scene.
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(d) Annotation of motion parameters.
Figure 6. The annotation tool.

10. Downstream Applications

10.1. LLM-based Scene Editing

We present a pipeline for automated, semantically-aware
object insertion into USD scenes. Given a USD scene from

1 o

Figure 7. Segmentation result of smaller details using the provided
oversegmentation (left) vs annotating on fine-grained level (right).
Segments produced by the oversegmentation can prove unable to
capture fine variations in the geometry, showing the need for a
fine-grained segmentation support.

Articulate3D, a 3D object file, and the object’s label, our so-
lution produces a new USD scene with the object placed in
a semantically-appropriate location. For example, in a bed-
room scene, a pillow object would be placed on a bed, while
in an office scene, a bottle would be placed on a desk. The
pipeline uses a LLM to show the USD-understanding capa-
bilities of LLMs, as well as to minimize user involvement.
Implementation details are outlined below.

The method requires three inputs: (1) a USD Articu-
late3D scene, (2) a 3D object file, and (3) the object’s label.
We support various 3D file formats (e.g., OBJ, USD, GLB).
Given the inputs, the pipeline extracts item labels and con-
nectivity data from the USD scene and prompts the LLM to
determine the appropriate placement target (e.g., a bed for
the pillow) and the type of surface required (e.g., horizontal
for a pillow, vertical for a poster). With this information, the
pipeline employs RANSAC to identify a suitable placement
plane on the target object. Using the plane, the input ob-
ject, and an example USD insertion script defined by us, the
LLM generates a script customized for the specific insertion
case. The generated script is then executed to produce the
updated Articulate3D USD scene.

For our pipeline, we have tested two LLMs - GPT-40
mini [48] and GPT-40 [49], both producing the desired re-
sults. We will release the pipeline as a Python CLI library.

10.2. Simulation-to-go for Robotics

Our data can be easily uploaded in a physics simulator and
used for robotics policy learning, without manual adaptions.
We use [saacSim with IsaacLab [42] as simulator setup due
to their USD-centricity. The utilized GPU is RTX 3090. All
simulations are conducted with the Franka robot.
Articulate3D scenes are versatile and can be utilized
with various policies, as demonstrated by their compatibil-
ity with both planner-based solutions and policy training via
PPO [60]. We also note that the Articulate3D scenes can be
used both for scene-level simulation, as well as for object-
level, as depicted in Fig. 13. This is enabled by USD’s
support for easy extraction of single objects. Scene-level
manipulations are also easy as objects within scenes can be
removed/added or rearranged to achieve versatility. If using
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Figure 8. Overview of the annotations provided by Articulate3D, ScanNet++ [86], and their combination. Articulate3D offers (a) detailed
annotations at both the object and part levels, including connectivity information, and (b) full articulation annotations. By combining
ScanNet++ with Articulate3D, users gain a comprehensive scene segmentation with nearly 100% coverage, alongside detailed annotations

for interactable objects and their motion specifications.

the object extraction strategy, the users obtain more than 3k
articulated real-world USD objects from over 50 categories.

Articulate3D scenes are decimated using quadratic dec-
imation. In this way we enable learning on multiple envi-
ronments in parallel, speeding up training.

Planner-based policies. We apply a planner-based policy
only requiring a specification of an object of interest (e.g.,
a cabinet), a movable part (drawer) and the corresponding
interactable part (handle). All articulation parameters and
configurations are derived from the USD scene file.

Proximal policy optimization (PPO) policies. Articu-
late3D scenes support training in simulation, which we
demonstrate by learning a drawer-opening policy via PPO,
with 87% success rate. We use 1024 environments and train
for 30k iterations with 40 steps per environment, with learn-
ing rate 5.0e-4 and adaptive schedule.

10.3. Cross-Domain Experiment - URDFormer

As illustrated in Sec. 6, we evaluated URDFormer [7] on
both Articulate3D and Multiscan dataset to demonstrated
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Figure 10. Distribution of the part-level labels.

the value of Articulate3D in cross-domain generalization.
URDFormer consist of global scene-object arrangement
generation and local object-part generation. We focus on
the second part and assume the poses of articulated artic-
ulated object are given. To obtain data required for fine-
tuning/evaluation of URDFormer, we generate pairs of im-
ages and 3D articulated object by selecting 3 top images per
object in which the object are most visible and then crop the
images to fit the object. URDFormer introduces biases in
the framework design for object URDF generation: it gen-
erates bounding boxes of parts of articulated object and then
fit the boxes with the part mesh from PartNet-Mobility [80],
and it also assumes the articulation axis is aligned with one
of edges of those bounding boxes. Thus, for fair evaluation,
we focused the accuracy of the generated bounding boxes
instead of the biased geometry or motion parameter. Gener-
ally, given the cropped image of articulated objects, we ap-
ply URDFormer to predict the bounding boxes and motion
type (rotation, translation and background) of the movalble
parts and evaluate the part detection accuracy by comparing
the predicted part bboxes and the ground truth ones.

10.4. Connectivity Graph Prediction

To demonstrate the value of Articulate3D in 3D holistic
scene understanding, particularly in the context of connec-
tivity graphs within articulated objects, we conduct experi-

ments on the task of connectivity graph prediction. As in-
troduced in Sec. 3, a connectivity graph refers to the hi-
erarchies between different partegments. In the graph, the
“root” part is the base to which other parts are attached.
A 7child” refers to a part that belongs to the parent part.
We train a network on Articulate3D that takes the 3D point
cloud of objects’ parts as input and predicts the connectiv-
ity graph of the parts by inferring relationship between each
part pair.
Method. We draw inspiration from the existing scene-
graph-based framework [58] and apply a similar network
for the task. As shown in Fig. 15, PointNet [3] is applied to
extract the information of geometry and appearance of part
segments, outputting per-part feature vectors. Then we treat
each part segment as a node and feed the feature vectors into
a graph attention network [71] to extract the relationship be-
tween the nodes. The features of the two node are concate-
nated and fed into a MLP to infer the pairwise relationship
between them ({no relationship, parent of, child of }).
Result. In Table. 9, we show the accuracy of the con-
nectivity graph prediction. From the table we can see
that (1) the random guess could achieve 36 % accuracy of
edge prediction by randomly picking one relationship from
{no relationship, parent of, child of} for each pair
of part segments, and (2) it has poor performance in the
connectivity graph prediction for objects as only 6.1% of
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Figure 11. Distribution of face counts per annotated item using logarithmic binning. Articulate3D

annotations alongside larger objects
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Figure 12. Distributions of the 30 most frequent object and part
labels, per split.

Figure 13. Simulation of an Articulate3D scene (left) vs simula-
tion of a single object from an Articulate3D scene (right).

objects’ connectivity graph are correctly predicted. Com-
pared to the random guess, by training on Articulate3D ,
our network can achieve much better performance in both
edge prediction (72.7%) and connectivity graph predic-
tion (31.1%). In order to further understand the perfor-
mance of our model in connectivity or edge prediction,

features numerous high-detail small

Method — Accedge (%)  Accon; (%)
Random 36.0 6.1
Ours 72.7 31.1

Table 9. Accuracy of connectivity graph prediction. Acc eqge rep-
resents the percentage of edges that are correctly recognized in
{no relationship, parent of, child of}; Accop; represents
the percentage of objects that has correct connectivity graph with
all the edges within it correctly recognized.

we plot the ROC curves as shown in Fig. 14. As the
edge prediction is a 3-category classification problem, we
transform the results into two binary classification prob-
lems for straightforward ROC plot: connectivity classifica-
tion ({no relationship,{ parent of, child of}}) and hi-
erarchical classification ({ parent of, child of}}). From
Fig. 14 we can see that our model has good performance
(with 0.88) in predicting the hierarchical relationship be-
tween part segments (whether a is the parent of b or the
opposite), while it is more challenging to tell whether two
parts have hierarchies within the connectivity graph (AUC
0.74).

11. Implementation and Experiment Details

This section introduces the implementation and experiment
details of the experiments in Sec. 4 and Sec. 5 as well as
additional results.

11.1. Implementation Details

We take 15% of the scenes (42 scenes) in Articulate3D as
the test set for evaluations. For the training and evalua-
tion of all the methods, we downsample the point cloud
with a voxel size of 2cm from the original laser scans
in [86], in order to achieve balance between preserv-
ing geometric details and computation resources. For
the task of movable part segmentation, all points in the
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Objects.

scene will be semantically segmented into one of the
classes {background, rotation, translation}. For points
of {rotation,translation}, instance labels are furthered
assigned for instance segmentation of movable part.

Softgroup. As described in the main paper, we adopt the
framework of Softgroup[73] for this task. We firstly pre-
train Softgroup[73] for 2000 epochs in the task of semantic
segmentation, and then further train the semantic segmen-
tation network together with instance grouping branch for
movable part segmentation and the articulation branch for
articulation parameters prediction for 220 epochs. For in-
teractable part segmentation, we also pretrain the network
with semantic segmentation for 2000 epochs and then an-
other 360 epochs for instance segmentation of interactable

Ground truth

g

Mask3D' ArtMask3D (Ours)

Figure 16. Movable part segmentation and articulation predictions
(origin and axis).

parts. The training batch size is 6, on 2 NVIDIA A100-40g
GPUs. Learning rate is 0.002.

Mask3D'. For Mask3D', we firstly pretrain it for semantic-
instance segmentation of movable part for 1000 epochs and
then further train it for joint tasks of movable part segmen-
tation and articulation prediction for 920 epochs. For in-
teractable part segmentation, we train the network for 1400
epochs. The training batch size is 1, on 1 NVIDIA A100-
40g Gpu and the learning rate is 0.0001. In order that the
input of large scenes in Articulate3D fits in the memory of
the training GPU, we randomly crop the input scenes into a
6 x 6 m? cuboid during training.

11.2. Additional Results

Qualitative results of movable part segmentation and mo-
tion prediction can be seen in Fig. 16. In order to further
understand the performance of the proposed USDNet, we
analyze its performance across objects of various sizes and
categories. In Fig. 17, we show the performance of USD-
Net in the task of movable part segmentation and articula-
tion parameter prediction over the movable parts with dif-
ferent number of points. From the figure we can see that for
the task of movable part segmentation and articulation ori-
gin prediction, USDNet performs better with middle-sized
parts (with 1739 ~ 5207 points) than with the small or large
parts (less than 1739 or more than 5207 points). On the
other hand, articulation axis prediction is more challenging
than origin prediction for the small- and middle-sized ob-
jects.

We also show the performance of USDNet across the
movable parts of different semantic categories. We select 6
dominant categories with significant numbers in both train-
ing and test set. In Fig. 18, we can see that USDNet per-
forms better in the category of drawer (middle sized objects)
than the other categories (small and large objects), which is
in accordance with the results shown in Fig. 17. It is notice-
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able that USDNet fails in the prediction of all the faucets,
which is mainly because the 3D meshes of faucets are not
well reconstructed and incomplete due to the complicated
geometry and reflective surfaces of them.

12. Details of Universal Scene Description

As mentioned in the main paper, USD organizes a scene
into hierarchical entities, primitives (prims)—-the building
blocks representing all objects and relationships in the
scene. Prims support a nested structure, where complex
objects (e.g., cabinets) are represented as parent prims con-
taining child sub-prims, modeling both individual items and
grouped components of the scene.

Each prim can be assigned various attributes, e.g., posi-
tion, scale, orientation, geometry, and appearance. Custom
attributes can be introduced, enabling dataset-specific data
to be embedded directly within the scene, such as physical
properties (e.g., mass), material details, or semantic labels.

USD also supports joints that define movable connec-
tions, e.g., door hinges, as well as fixed joints. This enables
the representation of both fixed and dynamic object rela-
tionships, making USD particularly suited for applications
requiring detailed articulation and interaction modeling.

USD offers a highly robust, standardized format for rep-
resenting complex 3D scenes, making it an ideal choice for
Articulate3D. It supports rich 3D data representations, in-
cluding mesh geometry, semantic segmentations, connec-
tivity and articulation definitions, and physical attributes
- all within a single, unified file. It offers an efficient,
lightweight alternative to datasets like MultiScan [40],
which require multiple scans of articulated objects in their
open and closed states. USD’s structure also supports non-
destructive edits, facilitating scene manipulations.

USD’s relevance and utility are increasingly recognized
within the research community. NVIDIA’s Isaac Sim [42,
46], built on USD, is gaining popularity as the state-of-the-
art simulator for research with its high-fidelity environment
for realistic physics-based simulations [23, 27, 56, 72, 91].
USD is also widely used in research going beyond robotics
simulations for projects like procedural scene generation
[52] and knowledge graph conversion for semantic query-
ing [45] .



