
A. Proofs

A.1. Proof of Lemma 2.1

Proof. Since f is sufficiently smooth in a neighborhood of (xt, t), near t, we can expand:
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Subtracting the expansions, we get
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Hence for small t0 � t,
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After the rectification
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Since xt0 � x̃t0 has precisely a linear term in t
0 � t given by (t0 � t) [f(xt, t)� f(x̃t, t)] plus possibly lower-order terms, we

can conclude that
kxt0 � x̂t0k2 = o(kxt0 � x̃t0k2),

which completes the proof.

A.2. Proof in Definition 2.4

Throughout the proof in this and the next section, we show the result for each coordinate of x, and the claim holds by
aggregating all the coordinates together. We use x to represent a coordinate of x.

Proof. We prove each property separately.

Given that f✓(x, t) = x and x0 = 1, it can be easily derived that xt = e
t.

Optimality. For single-core solve, R([0]) = ln e1 = 1, and S([0]) = 1
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have tK > 0. Denote xi
t as the solution of the i-th core at time t. Then we have x1
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t for any i  K � 1, t 2 [0, 1]. In that way, we can calculate that
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Monotonicity. By induction, it suffices to show that inserting a core to I1 while not changing S(I1) will improve the
reward R(I1). By the derivation in the part of optimality, and by Lemma 2.1, we have that updating with rectification can



increase the value at the same time step. Suppose the solution at time t on the new inserted core is x
new
t , and suppose the

new core is inserted between core i and core i + 1. We now prove that xi+1
t increases for any t > 0. For t1 < t, we

calculate the contribution of xi
t1 to x

i+1
t through rectification. Here, we choose t1 to be the smallest t1 such that xi
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new, then this contribution will be (1 + s1)(1 + s2)et�t1 . Here, s1, s2 > 0 are two times such that s1 + s2 = t � t1, thus

(1 + s1)(1 + s2) = 1 + t� t1 + s1s2 > 1 + t� t1. This is because the accurate solver will always contribute e
t�t1 , while

the coarse solver will be improved by adding a middle point. Notice that there must be at least one rectification happening
with x

new, xi+1
t will increase as a result.

Then, by induction, it can be easily shown that R(I1) increases after core insertion, which indicates, again by induction,
R(I1) < R(I2) for I1 ( I2.

For any I1 as the prefix of I2, suppose the last time step of I1 is tK1 and the last time step of I2 is tK2 , with K1  K2.
From the result in the proof of optimality, we have that xK1

1 � x
K2
1 , which means R(I1) � R(I2).

Trade-off. For any speed-up ratio 1  s1 < s2, suppose by contradiction we have maxS(I)=s1 R(I)  maxS(I)=s2 R(I).
In this case, there exists I2 such that S(I2) = s2 and for any I1 with S(I1) = s1 we have R(I2) � R(I1). Still by the result
in monotonicity, we can insert an additional core to I2 to be I02 such that I2 ⇢ I02 and 1� 1
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is a contradiction. By contradiction, we completed the proof.

A.3. Proof of Theorem 2.5

Proof. Denote x
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Notice that x3
1 = f(k) and this is exactly the same formula as in Case 1. Hence we have x

3
1 maximized at k = 2, which

corresponds to t = s�1
2s .

Next, we prove the case for s > 3. In this case, the first core is completely idle in that its communication with the second
core won’t help the hit. To ensure that there exists at least one communication between the second and the third core, we
should consider t � 1� 2

s .
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s  t  1� 1

s .

Suppose there are k communications between the second and the third core. In this case, t = 1� 1
s (1 +

1
k ).

It can be calculated that x2
t = 1 + t, x3

1� 1
s
= (1 + t)(2 � 1

s � t). Denote a = 1
sk . Notice that this is exactly the update
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the derivation of 9, we can get that
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Now it suffices to show (1� ea

a+1 )(e
a � a� 1)

c
a ln(1� a+1

ea ) 1a � c  0.

Denote g(c) = (1� ea

a+1 )(e
a � a� 1)

c
a ln(1� a+1

ea ) 1a � c, then we have

g
0(c) = (1� e

a

a+ 1
)(ea � a� 1)

c
a ln(1� a+ 1

ea
)
1

a2
ln(ea � a� 1)� 1,

g
00(c) = (1� e

a

a+ 1
)(ea � a� 1)

c
a ln(1� a+ 1

ea
)
1

a3
[ln(ea � a� 1)]2 > 0,

Since g
00(c) > 0, g

0(c) monotonically increases in c. Next, we show g
0(c)  0, to show which suffices to show

limc!1 g
0(c)  0. Indeed, since a 2 (0, 1

3 ], e
a � a � 1  e

1
3 � 4

3 < 1, hence limc!1 g
0(c)) = 0 � 1 = �1 < 0.

Now we proved that g0(c)  0 for c � a.

Finally, it remains to show g(a)  0 for a 2 (0, 1
3 ], which is

(1� e
a

a+ 1
)(ea � a� 1) ln(1� a+ 1

ea
)
1

a
� a  0.

This is equivalent to proving

(ea � a� 1)2 ln(1� a+ 1

ea
) + a

2(a+ 1) � 0.

By the inequality ln(1 + x) � xp
1+x

for x 2 (�1, 0], we have (ea � a � 1)2 ln(1 � a+1
ea ) � (ea � a � 1)2

� a+1
eap

1� a+1
ea

=

(ea�a�1)
3
2

e
a
2

(�a� 1). Now it suffices to show (ea�a�1)
3
2

e
a
2

 a
2, which is equivalent to (ea�a�1)3

ea  a
4.



Figure 5. Convergence curve on HunyuanVideo and SD3.5-Large.

Indeed, (ea�a�1)3

ea  (ea � a� 1)2  a
4. The last inequality holds because e

a � 1� a� a
2  0 for a 2 (0, 1

3 ]. Now we
have completed the proof.

B. More Experiment Results

Convergence curve of different initialization sequences. We additionally provide Figure 5 to show the convergence curve
of the L1-distance between the early-hit samples and the final output. The result strongly verifies the importance of initial-
ization by showing that our strategy yields remarkably faster convergence compared with uniform initialization sequence.

More qualitative results. Here we provide more qualitative results of our model in different video diffusion models and
image diffusion models. Note that we also present additional video samples obtained by our approach on the project website.

Figure 6. More results on image diffusion model Flux.



“A dense, enchanted forest filled with towering trees whose leaves shimmer with metallic hues of emerald and sapphire. Animals with subtle 
mechanical features roam peacefully among vibrant plants that glow faintly. A gentle wind rustles the leaves, producing a soft, melodic hum”

“A bustling, futuristic street market glowing vibrantly under neon lights of cyan, magenta, and electric green. Animated holographic signs flash 
advertisements in different languages as crowds dressed in cyberpunk fashion navigate the smoky […]”

“A rotating set of crystalline spheres, each sphere releasing radiant chord progressions that illuminate a cosmic backdrop"

“An advanced futuristic city bathed in vibrant neon lights. Skyscrapers adorned with glowing holographic billboards rise high into the night sky. 
Hovering vehicles silently glide along neon-lit highways suspended in midair. Below, bustling streets filled with people […]”

Figure 7. More results on video diffusion model HunyuanVideo.
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