Supplementary

1. Optical Imaging Models

When a point light source is imaged through a lens, a diffrac-
tion pattern called the "Airy disk" forms at the focal point,
featuring a bright central spot surrounded by concentric rings
of alternating bright and dark fringes. This effect is approxi-
mated by the point spread function (PSF), whose standard
deviation, dependent on the sensor’s focal ratio (f-number)
and detection band, quantifies the energy spread. In multi-
target imaging, each pixel’s intensity is the cumulative re-
sponse of overlaid point sources. The detector receives a
combined energy response that is the linear sum of individ-
ual PSFs . This superposition principle is fundamental to the
CSIST unmixing process, where the stacked response must
be decomposed to identify and characterize closely-spaced
infrared targets, as illustrated in Fig. 1. For remote objects,
each acts as a point source, with the radius of the resultant
Airy spot dictated by 1.22)\/D, where A is the wavelength
and D the lens diameter. This radius is equivalent to 1.9¢
of a Gaussian PSF, defining the sensor’s physical resolution
limit per the Rayleigh criterion.

2. CSO-mAP Metric

Once the predictions are classified as TP or FP, a binary list is
constructed following the common practice in COCO, where
a TP prediction is indicated by 1 and an FP prediction by O.
This binary list serves as the foundation for generating the
Precision-Recall (PR) curve. By varying the intensity thresh-
old for positive predictions, a series of Precision and Recall
values are obtained, forming the PR curve. The Average
Precision (AP), calculated as the area under the PR curve,
provides a comprehensive assessment of the model’s perfor-
mance across various intensity thresholds, effectively sum-
marizing the trade-off between Precision and Recall. Finally,
we introduce the CSO mean Average Precision (CSO-mAP),
which averages the AP across different distance thresholds
dr, offering a standardized metric for comparing the perfor-
mance of models in the CSIST unmixing task.

3. GrokCSO Toolkit

Recognizing the void in specialized, accessible tools for this
domain, we introduce GrokCSO, a comprehensive, open-
source toolkit architected to enhance the reconstruction of
closely spaced infrared small targets. While generic com-
puter vision fields benefit from a plethora of object detection
toolkits like MMDetection and GluonCYV, the specificity
of infrared small target unmixing has long necessitated a
dedicated platform. The absence of such a platform has
fragmented research efforts, impeding the reproducibility of
experiments and the comparative analysis of algorithms.

Developed atop the robust PyTorch framework, GrokCSO
is meticulously designed to address the unique challenges
inherent to closely spaced infrared small target unmixing. It
stands distinguished in its offerings:

1. Pre-trained Models and Reproducibility: GrokCSO
equips researchers with an arsenal of pre-trained mod-
els, complete with training scripts and logs of leading-
edge algorithms. This repository of resources not only
fosters reproducibility but also facilitates nuanced com-
parisons across diverse algorithmic approaches.

2. Tailored Flexibility and Evaluative Rigor: With
an extensive suite of adaptable backbones and necks,
GrokCSO accommodates a broader spectrum of com-
putational strategies. The toolkit incorporates special-
ized dataset loaders, cutting-edge attention mechanisms,
and versatile data augmentation workflows. Moreover,
GrokCSO introduces evaluation metrics specifically
calibrated for the intricacies of closely spaced infrared
small target unmixing. These metrics honor the distinct
nature of CSO challenges.

4. Hyperparameters Analysis

We also conduct experiments to analyze the relationship
between model performance, the number of stages, and the
coefficient of the dynamic transform branch, validating its
architectural and parametric robustness.

First, to determine an appropriate number of stages, we
trained the network with stage numbers K = 2,4, 6, 8, and
10. The performance curves are recorded in Figure 2. As the
number of stages increases from 2 to 6, the CSO-mAP score
improves, reaching its peak (46.74%) at 6 stages. Beyond
this point, additional stages result in diminishing returns.
Therefore, selecting 6 stages provides an optimal balance
between accuracy and efficiency.

Second, we adjusted the proportion of the dynamic trans-
form branch relative to the total contribution of both branches
and observed the performance changes. Starting from 0%
coefficient, performance improves as the influence of the
dynamic branch increases, peaking at a 30% coefficient. The
model maintains stable performance across coefficient set-
tings from 50% to 90%, demonstrating robustness. However,
at 100% coefficient, performance drops sharply to 30.62
(not labeled in the figure), confirming that integrating both
branches is crucial for optimal feature representation.

S. Initialization and Learning Objectives.

Initialization. Given a dataset {(z;,s;)},, where z; is
an image of overlapping targets and s; is the corresponding
super-resolved image, we calculate high-resolution target
coordinates in s; using the target information (z;, y;, ¢;) and
a scaling factor c. For instance, the grayscale value g; at

position (c - z; + <51, ¢ - y; + <51) in the high-resolution
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Figure 1. Multi target imaging, the imaging of distant targets on the image plane can be regarded as the diffusion of energy by point source
targets through PSF. Multi target imaging is the cumulative response of superimposed point sources.

2 4 6 8 10
Stage Number

Figure 2. CSO-mAP performance under different Stage Numbers
and Branch coefficients.

image is used to generate s;.
Let Z = [z1,...,2zm] and S = [sq,..
Qini¢ for initializing 5(©) is computed as:

., $p]. The matrix

Qinic = arngin 1QZ - S||% = sz1(zZ2") ™.

Thus, 5() is given by:
5O = Q2.

Loss Function. To ensure that the unmixed image 5 is as
close as possible to the ground truth image s while maintain-
ing the structure F(-) o F(-) = I, we designed the following
end-to-end training loss function for DISTA-Net, with a

training dataset of size M, N stages, and image size N:

L= Ldiscrepaney + ’Yﬁconstrainta

where:
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Here, Lgiscrepancy measures the mean squared error (MSE)
between the super-resolved image §£N) and the ground truth
image S;. Lconstraint €nforces the structural constraint by en-
suring that the composition of F*) and F*) approximates
the identity transformation for each stage k. ~y is a parameter
that balances the discrepancy and constraint terms.

This loss function aims to balance the accuracy of the
unmixed images with the structural integrity of the transfor-
mation functions.
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