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Appendix A: Methods Discussions

Planar-Based vs. Ellipsoid-Based. Planar-based meth-
ods (e.g., GSPro [3], PGSR [2], and 2DGS [5]) excel in
road representation due to their planar geometry and refine-
ment strategies but struggle with fine-textured urban objects
like plants and fences. Conversely, ellipsoid-based methods
(e.g., 3DGS [7] and 3DGM [8]) better handle high-textured
objects but often overfit, leading to errors in road represen-
tation. For instance, in the translation setting (Figure Ia),
planar-based methods struggle with plants, while ellipsoid-
based methods perform poorly on roads. A hybrid repre-
sentation could effectively combine the strengths of both
approaches to address these challenges in EUVS.
Enhancing View Synthesis with Diffusion Priors. While
training cameras may collectively cover the entire scene, the
limited number of viewpoints often results in insufficient
representation of certain areas. Leveraging diffusion priors
proves to be an effective approach in such cases. By su-
pervising augmented views with diffusion priors, unseen or
poorly represented views can be generated and corrected.
For instance, as shown in Figure Ib, the building rendered
by other models is fragmented, but guiding with diffusion
priors helps complete the building structure and presents a
holistic urban scene. On average, in Table 1 of the main
paper, VEGS [6] with diffusion priors significantly outper-
forms 3DGS [7] in the rotation-only setting, achieving a
19.4% increase in PSNR (23.33 vs. 19.53) and a 5.8% im-
provement in SSIM (0.7949 vs. 0.7511).
Regularization by Depth Priors. Utilizing depth priors
from foundation models, such as Depth Anything [9], has
proven to be an effective approach for enhancing training
regularization [4]. In our experiments, depth regularization
enhances geometric accuracy by utilizing depth information
to constrain Gaussians in regions like the sky and road to
more geometrically consistent positions. As shown in Fig-
ure Ic, the sky is accurately constrained to a distant position,
ensuring it does not overlap with the building during lane
changes. Similarly, the road is aligned to a consistent plane,
effectively mitigating the distortion issues observed in the
vanilla baseline. The regularization by depth priors ensures
spatial consistency and reduces visual artifacts, leading to
more reasonable extrapolated views.
Gaussian-Based vs. NeRF-Based Methods. A fundamen-
tal difference between Gaussian-based and NeRF-based ap-
proaches lies in their representation: Gaussian-based meth-
ods rely on explicit representations, whereas NeRF-based
methods use implicit representations. Our experiments re-
veal that implicit methods, such as Zip-NeRF [1], pre-

serve overall geometry more consistently under large shifts,
though it can still lose some sharpness even with small
viewpoint extrapolations. In contrast, the explicit repre-
sentation of Gaussian Splatting-based methods excels in re-
gions with accurate geometry, producing sharper fine details
(e.g., foliage), but struggles with incomplete geometry un-
der large shifts. , as illustrated in Figure Id.
Performance Gains from Multi-Traversal Data. Multi-
traversal data plays a critical role in Extrapolated View
Synthesis. Using the GaussianPro model [3] in Setting 1,
we progressively increase the number of training traver-
sals to observe its impact. The results, shown in Fig-
ure III and Figure II, indicate that as the number of traver-
sals increases, the NVS metrics for the test view gradu-
ally improve, then plateau. This consistent improvement
stems from increased unique observations, enabling diverse
perspectives and more accurate background reconstruction
while reducing dynamic object influence. This suggests that
incorporating more visual data can help improve the perfor-
mance of extrapolated view synthesis.

Appendix B: Comparison of Baselines

Quantitative Comparison. We report the quantitative per-
formance comparison across all settings and baselines in
Figure IV. (1) In Setting 1, the performance gaps on
the extrapolative test set are small, with most baselines
performing comparably poorly. Among them, 3DGS [7],
3DGM [8], and GSPro achieve relatively better results. (2)
In Setting 2 (Figure IVb), in extrapolated views, VEGS [6]
significantly outperforms all other methods, achieving at
least 20% higher PSNR. These results highlight the effec-
tiveness of diffusion priors in rotation-only settings. (3) In
Setting 3, as shown in Figure IVc, none of the baselines ex-
hibit a clear advantage, as all methods fail equally in this
challenging setting. On the extrapolative test set, differ-
ent baselines exhibit strengths in specific metrics, but no
method demonstrates superiority across all metrics, indicat-
ing that all baselines struggle with extrapolated view syn-
thesis and fail to address it fundamentally.
Qualitative Comparison. We present the qualitative base-
line comparison across all settings and baselines in Fig-
ure V, Figure VI and Figure VII. (1) In Setting 1, as
shown in Figure Vb, all methods exhibit imperfections
in ground rendering, while planar-based methods such as
2DGS [5] and PGSR [2] show comparatively fewer flaws
on the ground surface. GSPro [3] produces more accurate
geometry reconstruction, achieving realistic surfaces and
high-fidelity representations of street objects like trees and
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Figure I. Qualitative comparison of different techniques. The various techniques excel in different aspects, showing some trade-offs in
extrapolated view synthesis. Although they can partially address the challenges, they fail to resolve the underlying issues fundamentally.
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Figure II. As the number of traversals increases, the perfor-
mance of NVS improves. This is highlighted in the red box,
where the texture progressively enriches and errors in areas like
the sky and ground are reduced.

buildings. (2) In Setting 2, as shown in Figure VI, most
baselines suffer from sky artifacts such as holes and floating
objects. In contrast, VEGS [6] produces the more accurate
renderings, exhibiting minimal floating artifacts and broken
geometry, attributed to the guidance provided by diffusion

Figure III. NVS performance vs. number of traversals. With
more traversals, PSNR and SSIM exhibit notable improvements,
indicating enhanced image quality and structural similarity. LPIPS
values decrease, reflecting better perceptual consistency, while
CosSim stabilizes after an initial rise. These results highlight the
importance of more visual data for improving NVS performance.

priors. (3) In Setting 3, as shown in Figure VIIb, all base-
lines face significant challenges on the test set. The geom-
etry across all methods appears highly fragmented, and the
color consistency is compromised, reflecting a tendency to
overfit to the training views. Among the baselines, 2DGS
and PGSR show relatively weaker performance, underscor-
ing the limitations of planar representations in effectively
capturing the complexity of whole urban scenes.



(a) Baseline performance comparison in Setting 1.

(b) Baseline performance comparison in Setting 2.

(c) Baseline performance comparison in Setting 3.

Figure IV. Baseline performance comparison across different settings. Since scenes in different settings evaluate varying capabilities,
different baselines demonstrate strengths in different evaluation settings.
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(a) Rendering results comparison in original view.
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(b) Rendering results comparison in extrapolated view.

Figure V. Qualitative comparison of baseline methods in Setting 1. Ground reconstruction failures and floating artifacts in the sky are
particularly noticeable, highlighting the challenges in the lane change.
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(a) Rendering results comparison in original view. (b)  Rendering results comparison in extrapolated view.
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Figure VI. Qualitative comparison of baseline methods in Setting 2. The three front and three back cameras (six in total) are used for
training, while the two side cameras are reserved for testing. To ensure clarity and conciseness, only a subset of the training cameras is
visualized here due to space limitations.
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(b) Rendering results comparison in extrapolated view.

Figure VII. Qualitative comparison of baseline methods in Setting 3. The rendering quality deteriorates significantly in extrapolated
viewpoints. The geometry becomes fragmented, especially in trees, traffic lights, and lane marks.
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