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The supplementary file for the paper entitled ”InfGen: A Resolution-Agnostic Paradigm for Scalable Image Synthesis”
provides additional details on various aspects related to the paper, which are as follows:

1) Additional Preliminary

2) Detailed Network Architectures

3) Dataset Source

4) Additional Results

I. Additional Preliminary
I.1. Optimization of VAE
Eq.2 in the main body formulates a transformation from the latent back to the inputs. To ensure the encoder and decoder
work optimally, they are jointly optimized using the Evidence Lower Bound (ELBO). This objective function balances two
critical aspects:

L(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)∥p(z)) (1)

The ELBO ensures precise reconstruction, while the Kullback-Leibler divergence term encourages a well-structured latent
space by aligning it with a prior, typically a standard Gaussian. In practice, the sampling is replaced with a reparametrization
strategy [4], allowing gradient descent possible during the training,

z = µx + σx ⊙ ϵ, ϵ ∼ N (0, I), (2)

where mean µx and covariance σx is produced by the encoder µϕ(x) and σ2
ϕ(x), respectively.

Finally, the theoretical expectancy in Eq. 1 is replaced by a more or less accurate Monte-Carlo approximation [1]. The
pretraining objective in this section consists of a reconstruction term and a regularisation term,
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I.2. Latent Diffusion Models
LDMs [11] are generative models that leverage diffusion processes in a latent space to efficiently generate high-quality
images. They build on the principles of Denoising Diffusion Probabilistic Models (DDPMs) [3] but operate in a more compact
space (i.e., the latent representation y introduced above), which reduces computational complexity while maintaining output
fidelity.

The forward process in LDMs begins by gradually transforming a data point x0 into a latent variable zT . This transfor-
mation is achieved through a series of Gaussian noise additions, defined by a Markov chain:

zt =
√
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where ϵt ∼ N (0, I) is Gaussian noise, and αt are predefined variance schedules controlling the noise level at each step t.
This process ensures the data is encoded into a noise-like variable in the latent space.

The reverse process is employed to reconstruct the original data point x0 from the noisy latent variable zT . This involves
learned denoising steps that sequentially remove the noise:
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where ϵθ is a neural network trained to predict the noise added at each step. This reverse diffusion process gradually recon-
structs the data, leveraging the learned noise patterns.

To accurately reconstruct data from noise, DDPMs are used to model the complex distributions, which is solved by
optimizing the model parameters θ to minimize the variational lower bound (VLB):

L = Ez0,ϵ,t

[
∥ϵ− ϵθ(zt, t)∥2

]
. (6)

This objective encourages the model to accurately predict the noise ϵ at each step, effectively learning the reverse diffusion
process. By refining the noise predictions, the model can achieve high-quality reconstructions.

II. Dataset Source
For our training, we utilized high-resolution image datasets from the LAION dataset, specifically sourced from improved
aesthetics 4.5plus-ultra-hr and Laion aesthetics 5plus 1024 33M. These datasets provide high-quality
images, making them ideal for our task. The image IDs used in our training process can be found in the final open-sourced
code repository, ensuring full transparency and reproducibility.

III. Network Architectures
Tab. 1 elaborates the detailed network architecture of InfGen, including a frozen encoder and a trainable decoder.

IV. Additional Results

Comparison with the Commercial Product DALL-E-3. We provide additional visual comparisons between our InfGen +
SDXL [9] and the closed-source commercial text-to-image (T2I) product DALL-E-3 [7] in Figure 1. Our method demon-
strates the capability to generate high-quality images comparable to those produced by this leading commercial solution.

Additional Visual Results Varying in Resolution and Aspect Ratio from Gen2 + SDXL We present additional visual
results from our method in Figures 2, 3, 4, 5, and 6. Our approach demonstrates the ability to generate high-quality images
across diverse resolutions and aspect ratios, handling a wide range of scenarios, including close-up portraits, creative content,
and photorealistic scenes.

Comparison of Reconstructed and Original Images at Different Resolutions. Figure 7 illustrates the comparison between
the original images and their reconstructed counterparts at various resolutions. Although the original images are displayed at
different resolutions in the figure, it is important to note that the actual input size for the original images during processing
is fixed, such as 512 × 512. Our method demonstrates strong reconstruction performance across resolutions, effectively
preserving key details and overall visual fidelity. Achieving good reconstruction quality at different resolutions can help
improve the generation performance of various models across diverse resolution requirements.

Comparison with High-Resolution Image Generation Methods. In Figure 8 and 9, we show more visual comparisons with
state-of-the-art methods for generating high-resolution images. What sets our InfGen apart is its ability to generate images
at any resolution. No matter the resolution, our results consistently look better, with sharper details, more realistic textures,
and a clear preservation of small features. This shows that our method isn’t just flexible—it also produces high-quality,
visually appealing images across a wide range of resolutions. Additionally, the variety and consistency in the generated
images demonstrate that our model is reliable and works well in different scenarios, making it a powerful tool for creating
realistic images at any scale.

Improving Generation Quality Across Different Models. We applied our reconstruction model, InfGen, to various latent
space-based generative models, including DiT [8], SiT [6], FiT [5], and MaskDiT [12]. Our approach enables these models to
decode fixed latent sizes, such as 32×32 or 64×64, into images of arbitrary resolutions. Figure 10, Figure 11, Figure 12, and

https://huggingface.co/datasets/marianna13/improved_aesthetics_4.5plus-ultra-hr/viewer
https://huggingface.co/datasets/marianna13/improved_aesthetics_4.5plus-ultra-hr/viewer
https://huggingface.co/datasets/MuhammadHanif/Laion_aesthetics_5plus_1024_33M


Stage Latent-Reconstruction
Encoder Architecture Output Sizes

input data B×3×512×512

encoder VAE Encoder

quan conv Conv 8×512×3×3 µx: B×4×64×64

µx σx σx:B×4×64×64

latent y y← µx + σx ⊙ ϵ ∼ N (0, 1) B×4 ×64 ×64

Decoder Architecture

post quant conv Conv 512×4×3×3 B×512×64×64

conv in Conv 512×512×3×3 B×512×64×64

token generation
Latent token: B×4096×512 + Latent Position Embedding B×4096×512

Mask token: B×Hl ∗W l×512 + Mask Token Position Embedding B×Hl ∗W l×512

cross attn blocks ×N


Q Linear(512)

K Linear(512)

V Linear(512)

→Q is mask tokens, K and V are latent tokens

B×Hl ∗W l×512
Multi Head Cross-Attention

Linear(512)

MLP(512) B×Hl ∗W l×512

reshape from B×Hl ∗W l×512 to B×512×Hl×W l B×512×Hl×W l

mid block UNetMidBlock2D ×1

up blocks get up block ×3 B×128×Hl ∗ 8×W l ∗ 8

conv norm out GroupNorm(512)

conv act SiLU

conv out Conv 128×3×3×3 B×3×Hl ∗ 8×W l ∗ 8

Table 1. Architectures details. {B×D×H×W} denotes a feature shaped as batch size, channel, width, and height, respectively.
{B×N×D} denotes a sequence with the shape of batch size, sequence length, and dimension.

Figure 13 provide a comparison between using our method to change the resolution and directly performing interpolation on
the original generated results. The visual comparisons clearly demonstrate that our method produces images with significantly
richer details, sharper textures, and more realistic structures compared to simple interpolation techniques.

By leveraging our reconstruction model, the generative models not only achieve higher resolution outputs but also en-
hance the overall visual quality, especially in preserving fine-grained details that are often lost or blurred with interpolation.
Furthermore, our method introduces flexibility, allowing these generative models to adapt seamlessly to different resolution
requirements without additional modifications to their architectures. This highlights the effectiveness of our approach in
bridging the gap between fixed latent spaces and high-quality image generation at arbitrary resolutions, making it a valuable
tool for improving the versatility and performance of existing generative models.
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Figure 1. Visual comparison with DALL-E-3 at 1024 × 1792 resolution.
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Figure 2. Visual results of InfGen + SDXL at 2888× 3720 resolution.



A dense, mystical forest with sunlight streaming through the tall trees, 
illuminating the lush green moss and foliage, cinematic atmosphere

A tranquil beach at sunrise, gentle waves lapping the shore, with palm trees 
swaying in the breeze, and soft pastel colors in the sky

Figure 3. Visual results of InfGen + SDXL at 3072× 2048 resolution.



An aerial view of a tropical island surrounded by crystal-clear turquoise water, 
coral reefs visible beneath the surface, and white sandy beaches

A peaceful Japanese garden with a koi pond, arched wooden bridge, cherry 
blossoms in full bloom, and lanterns softly glowing, tranquil and serene

Figure 4. Visual results of InfGen + SDXL at 3072× 2048 resolution.



A charismatic young man with medium-length 
brown hair, wearing a leather jacket, leaning 

against a vintage motorcycle on a deserted road 
at dusk, cinematic and detailed

A magical sorceress with glowing purple eyes, 
wearing an ornate gown decorated with 

mystical runes, casting a spell with magical 
energy swirling around her hands, fantasy style

A confident young woman with short, vibrant 
blue hair and piercing green eyes, wearing a 
modern cyberpunk outfit with neon accents, 

standing in a futuristic cityscape, highly 
detailed and cinematic

A cheerful little girl with curly red hair, 
wearing a yellow dress, playing with a puppy 
in a sunny meadow filled with wildflowers, 

soft and whimsical style

Figure 5. Visual results of InfGen + SDXL at 768× 1024 resolution.
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Figure 6. Visual results of InfGen + SDXL at 2800× 1664 resolution.
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First Row: Reconstructed Image Second Row: Original Image

Figure 7. The reconstruction performance of InfGen on LAION dataset at multiple resolutions.
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Figure 8. Visual comparison with other high-resolutio image generation methods (UltraPixel [10] and ScaleCrafter [2]). Images are at the
2048× 2048 resolution.



Gen² + SDXL
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Figure 9. Visual comparison with UltraPixel [10]. Images are at the 3072× 3072 resolution. .



DiT-XL/2 Gen² + DiT-XL/2

1024×10241024×1024

Figure 10. Comparison of generated images from fixed latent sizes (i.e., 32 × 32) decoded to higher resolutions using our InfGen+DiT-
XL/2 model versus interpolation-based upscaling. Zoom in for a better view.



FiT-v1 Gen² +FiT-v1

1024×10241024×1024

Figure 11. Comparison of generated images from fixed latent sizes (i.e., 32× 32) decoded to higher resolutions using our InfGen+FiTv1
model versus interpolation-based upscaling. Zoom in for a better view.



SiT Gen² +SiT
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Figure 12. Comparison of generated images from fixed latent sizes (i.e., 32 × 32) decoded to higher resolutions using our InfGen+SiT
model versus interpolation-based upscaling. Zoom in for a better view.



MDTv2 Gen² +MDTv2

1024×10241024×1024

Figure 13. Comparison of generated images from fixed latent sizes (i.e., 32×32) decoded to higher resolutions using our InfGen+MDTv2
model versus interpolation-based upscaling. Zoom in for a better view.



References
[1] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte carlo. Physics letters B, 195(2):216–222,

1987. 1
[2] Yingqing He, Shaoshu Yang, Haoxin Chen, Xiaodong Cun, Menghan Xia, Yong Zhang, Xintao Wang, Ran He, Qifeng Chen, and Ying

Shan. Scalecrafter: Tuning-free higher-resolution visual generation with diffusion models. In The Twelfth International Conference
on Learning Representations, 2023. 11

[3] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information processing
systems, 33:6840–6851, 2020. 1

[4] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference on Learning Representations,
2014. 1

[5] Zeyu Lu, Zidong Wang, Di Huang, Chengyue Wu, Xihui Liu, Wanli Ouyang, and Lei Bai. Fit: Flexible vision transformer for
diffusion model. ICML, 2024. 2

[6] Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Saining Xie. Sit: Exploring flow and
diffusion-based generative models with scalable interpolant transformers. arXiv preprint arXiv:2401.08740, 2024. 2

[7] OpenAI. Dall-e 3. https://openai.com/dall-e-3, 2023. Accessed: 2024-11-21. 2
[8] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 4195–4205, 2023. 2
[9] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl:

Improving latent diffusion models for high-resolution image synthesis. arXiv preprint arXiv:2307.01952, 2023. 2
[10] Jingjing Ren, Wenbo Li, Haoyu Chen, Renjing Pei, Bin Shao, Yong Guo, Long Peng, Fenglong Song, and Lei Zhu. Ultrapixel:

Advancing ultra-high-resolution image synthesis to new peaks. In NeurIPs, 2024. 11, 12
[11] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent

diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10684–10695,
2022. 1

[12] Hongkai Zheng, Weili Nie, Arash Vahdat, and Anima Anandkumar. Fast training of diffusion models with masked transformers. In
Transactions on Machine Learning Research (TMLR), 2024. 2

https://openai.com/dall-e-3

	Additional Preliminary
	Optimization of VAE
	Latent Diffusion Models

	Dataset Source
	Network Architectures
	Additional Results

