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Figure S1. Schematic flow of the standard JPEG compression.

Figure S2. Visual summary of the proposed JPEG decoding. The loss incurred during the JPEG pipeline is modeled as Eq. (1) of the main
paper.

1. Introduction

This supplementary material is intended to support the main
paper. We provide a notation table in Tab. S1 to clarify the
methodology and problem formulation. Additional back-
ground of JPEG compression codec is provided to define
the problem and illustrate how the decoder works with a
schematic overflow in Fig. S2. Further experimental results
are included.

2. JPEG Preliminary

In this section, we build upon Sec. 3 of the main paper
and elaborate on the fundamentals of JPEG compression.
We then characterize the compression artifacts of JPEG and
provide further details of our proposed method.
Standard JPEG compression Fig. S1 hows the process of
encoding and decoding an RGB image through the stan-
dard JPEG pipeline. During encoding, the JPEG algo-
rithm decomposes an RGB image into its luminance and
chroma components. The chroma components undergo a
subsampling process using the nearest neighbor method.
The chroma subsampling procedure is optional, with three
distinct methods: reducing both dimensions by half (4:2:0),
halving only the width (4:2:2), or maintaining both dimen-
sions unchanged (4:4:4). Subsequently, 8 → 8 2D-DCT
transformed spectra are quantized using a predefined quan-

tization matrix. During decoding, the stored quantization
map (Q) is multiplied with the quantized coefficients (Y→)
to recover the spectrum (Ỹ). A 2D-IDCT is then applied,
followed by resizing the chroma channels to the luminance
resolution. The result is transformed back to the RGB do-
main. Each symbol is encoded into a bitstream via Huffman
coding.

A backward-compatible neural codec with JPEG, includ-
ing our JPNeO, is subject to several constraints within this
process. Most notably, JENO is applied as a pre-processing
step before quantization. This constraint ensures that im-
ages compressed by JENO remain decodable into valid out-
puts using the standard JPEG decoder. As noted by Han
et al. [22], JDNO operates directly on spectral representa-
tions and be capable of reconstructing high-frequency com-
ponents. To support arbitrary resizing of chroma compo-
nents, a coordinate-based representation—such as implicit
neural representations or neural operators—is applied.
JPEG Artifact Removal JPEG compression loss mainly
occurs during the encoding process and exhibits complex
characteristics. In particular, the independent processing
of blocks introduces noticeable visual discontinuities at
block boundaries, commonly known as blocking artifacts.
High-frequency components undergo more heavier quan-
tization than low-frequencies, resulting in greater loss in
high-frequency regions. In addition, the chroma channels



Symbol Definition Description Meaning / Note

X ↑ RH→W→3 Original RGB image Ground-truth
Y = D8(X) Real-valued discrete cosine transform’s coefficients
Q ↑ [1, 255]8→8 Standard JPEG quantization matrix Integer
Qω ↑ [1, 255]8→8 Learned quant. matrix Learned as float number and stored as integer.

H,W,K,M ↑ N Height (H), Width (W ), and Channel (K,M) of a Tensor
B ↑ N Block size of the JDNO 4 as implementation
M ↑ N Cosine-feature channels of Tε 128 as implementation
r1,2 ↑ {0.5, 1} Sub-sampling ratio r1,2 for the height and the width, respectively
ω ↑ RH→W→2 Coord. grid Input to JENO and used in S

ωY,C ↑ Rr1H→r2W→2 Coordinates of z Used in S
!ω ↑ [↓1, 1]2 Local coordinates Used in S
si ↑ R Local area weight Used in S
c := (2/r1, 2/r2) Anti-aliasing factor Used in S
z ↑ RH→W→K Feature map of the JPNeO
ε ↑ (0,↔) Loss trade-off Used in training Qω

ϑ,ϖ, ϱ, ς, φ,↼ – Trainable parameters of the JPNeO

DB X ↗ Y Discrete Cosine Transform (DCT) with block-size B D↑1 as an inverse DCT (IDCT)
EJPEG X ↗ Y↓ JPEG standard encoder
DJPEG Y↓ ↗ X̃ JPEG standard decoder
Eϑ (X, (ωY , ωC)) ↗ (XY ,XC) JPEG Encoding Neural Operator (JENO) Gϖ ↘ S ↘ fϱ

Dς (ỸY , ỸC ;Q) ↗ X̂ JPEG Decoding Neural Operator (JDNO) Gϖ ↘ Tε ↘ S ↘ fϱ

fϱ X ↗ z or (ỸY, ỸC) ↗ z Feature extractor of JPNeO JENO and JDNO, respectively
Gϑ z ↗ X̂ Neural Operator Utilizing Galerkin attention
Tε (z↓

, ω,Q) ↗ z Cosine Neural Operator (CNO) A ≃ (cos(↽Fh ≃ ωh) ⇐ cos(↽Fw ≃ ωw))
ha, hf RK ↗ RM Coefficient and Frequency for Tε

hq R128 ↗ RM Quantization matrix encoder Used in A = hq(Q) · ha(z
↓)

S (z, ω) ↗ {[si · z(ωi),!ωi]
j

i=1, c} Sampling operator
U(·) Rr1H→r2W→C ↗ RH→W→C Upsample operator
(·)↓ – Variant of (·) that is structurally equivalent
(̃·) – (·) with distortions
(̂·) – Prediction to (·) with a neural network

HPF, LPF – High/Low-pass filters
Ld,Lr – Distortion / bitrate loss For Qω

⇐, ≃ – Hadamard / Kronecker product Element-/tensor-wise

Table S1. Notation table for the main paper (Elements and Functions (calculations), respectively.

are resized during compression, color distortions are more
severe than those in the luminance channel.

We hypothesize that JPEG distortions can be modeled
as a differential equation, and our objective is to formulate
and solve this equation accordingly. To realize this mecha-
nism, we model the decoder as a neural operator. In Fig. S2,
a JPEG image f = Lau is stored as a DCT spectrum. We
propose a cosine operator that predicts a continuous spectral
representation and maps it to image features—serving two
key purposes in bridging frequency and spatial domains.
The first is to infer high-frequency details, thereby improv-
ing the reconstruction of missing information. The second
is to bridge the spectral and image domains by translating
frequency-domain information into spatial representations.
Then, a neural operator then approximates the inverse trans-
form L↓1

a
.

3. Additional Experiments

Memory Consumption Following the Sec. 6 of the main
paper, we report memory consumption and the number of
parameters. We compare our JPNeO with QGAC [17],
FBCNN [23], and JDEC [22]. The size of the input for
the comparison is 560→560. Fig. S3 shows the result of the

Figure S3. PSNR and memory consumption comparison with
other methods in LIVE-1 [39](q = 90, 4:2:0 subsampling).

comparison. We also report the memory usage of JENO.
Notably, JENO surpasses the performance of FBCNN and
QGAC while requiring only a minimal amount of memory.
Roles of JDNO and JENO Fig. S5 shows the results
when each encoder and decoder is replaced with the
JPNeO component, compared to the original JPEG. At



JPEG+Q JENO+Q JPEG+Qω JENO+Qω

Figure S4. Qualitative comparison images (top) and corresponding error maps (bottom) compressed by varying an encoder (EJPEG/Eε)
and a quantization matrix (Q/Qω).

bpp|PSNR
JPEG + JPEG JENO + JPEG JPNeO

low high low high low high
Q 0.358|25.29 1.488|33.07 0.358|25.31 1.499|33.19 0.358|27.77 1.499|35.95
Qω 0.335|25.50 1.464|34.03 0.335|25.51 1.486|34.19 0.335|27.77 1.486|36.86

Table S2. Quantitative comparison by varying a quantization ma-
trix (Q/Qω)

low rates the dominant artifacts are from quantization
and blocking; the decoder-side JDNO removes these ar-
tifacts over plain JPEG—see the shaded “JDNO lifting”
band. At higher rates the quantization artifact is mi-
nor, so quality is bounded by the encoder’s performance
(“JENO lifting” band). As a result, JDNO is crucial in the
low-bit-rate region, while JENO dominates at high rates.

Figure S5. Improvements
obtained by replacing
EJPEG/DJPEG to Eε/Dϑ com-
pared to JPEG. The decoder
contributes more significantly
at low bpp levels, while
the encoder becomes more
influential as bpp increases.

Fig. S5 relates to Sec. 6
and Fig. 13 of the main
paper, where the increase
in mutual information
corresponds to improve-
ments in PSNR. Notably,
JENO is trained in a
distortion-blind manner;
while its impact is lim-
ited in highly degraded
regions, it enhances color
fidelity in high-quality
areas as noted in Fig. 9 of
the main paper. Fig. S4
supports the observation
by supplementing Fig. 9
in the main paper by high-
lighting the advantage of
jointly using JENO and the learned quantization map.

Further, in Tab. S2 we provide a comparison between
Q/Qϖ . Since it is difficult to find a Qϖ that matches the
bpp of each Q, we show image quality at the most similar
bpp values.

Dec. LIVE1 [39] B500 [4] Enc. LIVE1 [39] B500 [4]
0 40 0 40 90 100 90 100

JDNO 23.25 32.17 23.20 31.89 JENO 37.20 45.47 37.84 48.61
CNN [30] 23.14 32.06 23.11 31.83 CNN [30] 37.17 45.21 37.71 47.15
UNet [23] 22.77 31.05 22.76 30.95 UNet [23] 37.13 44.87 37.67 46.68

Table S3. Quantitative ablation study by replacing components of
our JPNeO with CNN [30] and U-Net [23] architectures.

Figure S6. RD curve comparison with CNN [30] and U-Net[23]
architectures.

Ablation Study In Tab. S3 and Fig. S6, we conducted abla-
tion experiments using CNN and U-Net for the encoder and
decoder. Specifically, we adopt the architecture introduced
by Lim et al. [30] for CNN and Jiang et al. [23] for U-net.
Our method consistently achieves better results than exist-
ing approaches. For a fair comparison, all networks were
configured to have the same number of parameters. The
results demonstrate that our JPNeO achieves greater effi-
ciency under equal capacity.


