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Supplementary Material

1. Network Structure
Network Encoder. The encoder is based on ResNet [1]
and consists of four feature extraction modules, each con-
taining two stacked residual blocks. The first block in each
module performs downsampling, while the second main-
tains the resolution. Features at different resolutions from
each module are aligned to a consistent resolution via inter-
polation and concatenated along the channel to form multi-
scale representations. The concatenated features are then
compressed along the channel using a 1× 1 convolution.

2. Implementation Details
Training details. To accelerate training, events in Ev-
PointOdyssey are converted into time surface [2] represen-
tations at the original spatial resolution and stored. Sam-
pling is conducted with step sizes of {1, 2, 4}, where each
sampled sequence has a length of 48. Starting points for
sampling are selected along the timeline at intervals of 2,
ensuring comprehensive coverage of the entire sequence.
This process generates approximately 340k training sam-
ples, each containing 128 tracking points.

Data augmentations. To improve model robustness,
several data augmentation techniques are applied. Random
pixel erasure is performed at all time steps, with varying
erased regions to enhance the network’s ability to handle
occlusions. The erased values are replaced by the mean of
the original region. Additionally, random scale-up is em-
ployed to improve tracking across different object scales,
with scale parameters for the next time step initialized from
the previous step and adjusted with slight random perturba-
tions. Spatial flipping and temporal reversal are also applied
to further diversify the dataset.

3. Additional Ablation Experiments
In addition to the ablation studies reported in the main pa-
per, experiments are conducted on the input event repre-
sentation and the number of pixels used for plane fitting in
the motion-guidance module. Due to time constraints, these
experiments are performed on a baseline model, which ex-
cludes the variable motion aware module, and are con-
ducted at a lower resolution of 192× 256.

Input representation. Different input event representa-
tions significantly impact event-based networks. To evalu-
ate their effects on this task, various representations are used
to train the baseline model, with the results presented in
Tab. 1. Event image aggregates the number of events at each

Table 1. Ablation studies on different input event representations.

Representations Ev-PointOdyssey
σavg ↑ MTE ↓ Survival50 ↑

Event image 0.298 54.43 0.443
Voxel grid 0.312 51.24 0.457

Time surface 0.323 48.41 0.477

(a) Ablation study on γ

(b) Ablation study on iterations

Figure 1. The survival metric is maximized when gamma and iter-
ation are set to 0.8 and 6, respectively.

pixel over a fixed time window. Voxel grid [3] represents a
spatiotemporal histogram, where each voxel corresponds to
a specific pixel and time interval. Time surface [2] is a 2D
map where each pixel stores the timestamp of the most re-
cent event. As highlighted in the introduction of main paper,
the TAP task relies on continuous motion information. Both
event image and voxel grid quantize event timestamps, dis-
carding dense temporal details, which limits their ability to
capture smooth motion dynamics. In contrast, time surface
retains rich temporal information, with each pixel encoding
the motion history at its location, making it more suitable
for encoding temporal motion cues effectively. As a result,
time surface demonstrates superior performance compared
with other representations.

Weight factor γ in loss function. As described in Eq.
(8) of the main paper, the losses across different time steps
are weighted by a factor γ, assigning a higher penalty to
losses occurring at later time steps. An ablation study is
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Figure 2. Qualitative results for Ev-PointOdyssey dataset.
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Figure 3. Qualitative results for EDS dataset.

performed to identify the optimal γ. Figure 1a demonstrates
that the Survival50 is maximized when γ equals 0.8.

The number of iterations. In addition to γ, the num-
ber of iterations also significantly affects tracking accuracy.
While increasing the iteration count typically enhances ac-

curacy, it also requires more computational resources. To
find an optimal trade-off, an ablation study on the iteration
count is performed. As illustrated in Fig. 1b, when the iter-
ation count reaches 6, further increases do not yield signifi-
cant improvements in the metrics.

4. More Qualitative Results
Additional qualitative results are provided in Figs. 2 and 3
with higher-resolution images for clearer visualization.
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