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A. Polarimetric image formation model

In this section, we provide a more detailed explanation of
the polarimetric theory utilized in our method.

According to the polarized Bidirectional Reflectance
Distribution Function (BRDF) model [1], the output Stokes
vector s,(v) can be separated into diffuse and specular
components as:

So(v) = | Hys;(w) dw +
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The diffuse and specular Stokes components under a single
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light source can be formulated respectively as:
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Unlike PANDORA [5] and NeRSP [7], we use the Gaus-
sian Splatting structure to represent the diffuse compo-
nent instead of a complex implicit Multi-Layer Perceptron
(MLP) network. We also use a cubemap encoder followed
by 3DGS-DR [9] to predict the environment map and the
specular component from different views. Therefore, we
define the diffuse color C' = [, pL(w)w "nT;"T; dw and
specular color L, = ps [, L(w)% dw, and the final
So(v) can be represented as:
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To make the diffuse color view-independent, we adjust
the order of the spherical harmonics (SH) coefficients to
zero, facilitating the radiance decomposition. In Section D,
we conduct an experiment to show the differences resulting
from the SH coefficient adjustment under different numbers
of input views.

B. Additional results on real-world datasets

This section presents more results on real-world datasets
tested with different methods.
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Figure 1. Qualitative shape recoveries on PANDORA [5].
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Figure 2. Qualitative shape recoveries on RMVP3D [7].

B.1. Comparison on PANDORA [5]

Figure 1 illustrates mesh reconstruction results using differ-
ent methods on PANDORA [5]. The qualitative comparison
demonstrates that our PolGS achieves superior reconstruc-
tion quality compared to other 3DGS-based approaches.

B.2. Comparison on RMVP3D [7]

Figure 2 presents the mesh reconstruction results using dif-
ferent methods on RMVP3D [7]. The qualitative results in-
dicate that our PolGS not only surpasses other 3DGS-based
approaches but also achieves performance closer to SDF-
based methods in a shorter time.

C. Additional results on synthetic dataset

In this section, we display more results on the synthetic
dataset tested with different methods.

C.1. Comparison on SMVP3D [7]

Figure 3 shows the surface normal estimation results us-
ing different methods on SMVP3D [7]. The qualitative
and quantitative results both demonstrate that our PolGS
achieves better reconstruction quality compared to other
3DGS-based approaches.

D. Analysis of SH coefficient adjustment

In the main paper, we display the surface normal prediction
before and after the SH (Spherical Harmonics) coefficient
adjustment. In Fig. 4, we provide additional experimental
results with different input numbers of views, along with SH
coefficient adjustment. We show the diffuse and specular
separation with SH coefficients of order O and 3 with input
number views 9 and 18. It can be observed that the ability to
perform radiance decomposition decreases as the SH coef-
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Figure 3. Qualitative comparisons on surface normal estimation of SQUIRREL in SMVP3D [7], where our 3DGS-based method can
outperform existing methods based on the same representation and achieves comparable results with SDF-based methods such as NeRSP [7]

and PANDORA [5] while with higher efficiency.

ficient order increases, especially when the number of input nomenon further demonstrates the reasonableness of our ad-
views is not significantly high. However, with more input justment of the SH coefficients.

views, the use of higher-order spherical harmonic functions

tends to better fit the diffuse color, so the difference with

the Oth-order results is not as significant. The above phe-
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Figure 4. Radiance decomposition results obtained using different
spherical harmonic (SH) coefficient orders, specifically 0, 1, and
3.

E. Implementation details

In this section, we introduce more implementation details
about experiment settings and our training strategy.

E.1. Experiment settings

We test our model and compare it with other methods on
three datasets: one synthetic dataset (SMVP3D [7]) and two
real-world datasets (PANDORA [5] and RMVP3D [7]).

SMVP3D [7] This dataset contains five objects, and the
input Stokes parameters and images are all at a resolution
of 512 x 512 pixels. We select 36 different views around
each object to ensure adequate coverage. The specific input
views are displayed in Fig. 5 (a).

PANDORA [5] The PANDORA [5] dataset includes
three objects, and we select two of them for testing. The
original input resolution is 2048 x 2448, which we resize
to 512 x 612 during training and evaluation. We use 35
views to train on each object. The specific input views are
displayed in Figure 2(b).

RMVP3D [7] Containing four objects, we select three
from the RMVP3D [7] dataset for testing. The original
input resolution is 1024 x 1224, resized to 512 x 612 for
consistency during training and evaluation. We employ 35
views to train on each object. The specific input views are
displayed in Figure 2(c).

E.2. Training and Evaluation

During the training period, we first perform 1,000 epochs
for warm-up. The total number of training epochs is 15,000,

Figure 5. Visualization of view distributions of different datasets.
(a) Input views display on SMVP3D [7]. (b) Input views display
on PANDORA [5]. (¢) Input views display on RMVP3D [7].

meaning we introduce the polarimetric loss £,,; and per-
form radiance decomposition after the initial 1,000 epochs.

After training, we use the mesh extraction method from
Gaussian Surfels [4]. Specifically, we set the depth coeffi-
cient to 8 to reduce artifacts from the generated point cloud.

F. Failure case

As shown in Fig. 3, the reconstruction results are not sat-
isfactory, especially for the DRAGON model. This is due
to the fact that the reconstructed objects are elongated, and
the quality of the reconstructed mesh decreases consider-
ably when the input view is not in the form of an equatorial
surround as in PANDORA [5] or RMVP3D [7]. Addition-
ally, the number of input views greatly affects the quality of
the reconstruction, as can be observed in the 3DGS-based
approach,such as 3DGS-DR [9] and Re-3DGS [6]. In their
paper, with 100 input images as training data, they are able
to recover the normal vectors very well. However, in our
experiments, only 30 — 40 views were used as inputs, so
both our results and other 3DGS-based methods are much
less effective in shape recovery. There is still a gap between
this and SDF-based methods, and this is an area for future
improvement.



G. Limitations

Although we utilize the additional polarimetric prior to
constrain the surface normal representation, our method
relies on assumption of an unpolarized environment
light and ignores the inter-reflections among the sur-
faces. These constraints may limit its practicality
in real-world scenarios.  Furthermore, the polarimet-
ric information can be compromised by noise in real-
world data, potentially affecting the accuracy of our re-
sults.
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