Supplementary Material

1. Differences between ours and prior work.

Our work focuses on generating compositional 3D scenes
from single images, whereas the prior Layout Learning de-
rives 3D compositions from textual descriptions. Text-to-
3D generation places a strong emphasis on the diversity
of the generated content, along with the proper structure
and fine textures of the generated assets, while image-to-3D
content generation emphasizes the fidelity and consistency
of the generated assets with respect to the input images.
This fundamental difference in input types presents unique
challenges. Thus, our method must accurately interpret and
render the complex visual details of an image into a co-
herent 3D layout. Technically, while Layout Learning em-
ploys Score Distillation Sampling (SDS) for text-based su-
pervision, our approach utilizes the differentiable rendering,
where we propose a novel combination of optimal transport-
based appearance loss and semantic loss using the DINO-
v2 to optimize the layout of 3D assets generated from the
first stage under the supervision of input single images. Our
framework allows users to choose whether to optimize ro-
tation (r) as a variable. While end-to-end generation via
large-scale multi-object 3D datasets is a promising direc-
tion, it is limited by the high cost of data construction and
model retraining. In contrast, our modular two-stage ap-
proach enables low-cost composition without the need for
large-scale finetuning. Moreover, our method can facilitate
the creation of such datasets by providing structured multi-
object scenes, forming a cycle.

2. More implementation details

Throughout the experiment, both the reference and rendered
images are maintained at a resolution of 256 x 256. In the
long-range appearance loss function L,, we estimate the
depth of the images using DPT-DINOv2-base [7]. For pixel
matching, we adopt Sinkhorn divergences [2] as an efficient
approximation of the optimal transport algorithm and use
a GPU implementation provided by GemoLoss [4] with the
parameter e set to 0.01. In the high-level semantic loss func-
tion Lg, we extract image features using DINOv2-base [7]
and compute the loss using features of the last hidden state.
L is subjected to a warm-up period of 200 iterations. In
Eq.5, we set A to 0.8.

3. User study

We conducted a user study to compare our method with
others. We gathered 280 responses from 40 human partici-
pants. Each participant was shown a reference image along-
side four 3D assets (including our model and baseline model
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Figure 1. User study of different models.

DreamGaussian [9], Wonder3D [6] and LRM [5]) simulta-
neously and asked to select the most realistic assets based
on geometry, texture quality, and accurate placement. All
options were presented in a randomized order with no time
constraints. Figure | illustrates that our approach signifi-
cantly outperformed previous methods in terms of human
preference.

4. Additional ablation study

Rendering resolution. In our ablation study, we analyzed
the impact of different renderer resolutions on layout align-
ment, as shown in the Table 1. The default resolution of
256x256 in the REPARO framework achieves the high-
est CLIP score (0.833 in DreamGaussian-based REPARO)
and provides excellent semantic consistency and spatial ar-
rangement. While a resolution of 512x512 shows compara-
ble performance, the marginal gains do not justify the sig-
nificantly higher computational costs and longer optimiza-
tion time. Given that 256x256 strikes a balance between
performance and optimization efficiency, it is selected as the
default resolution for REPARO, offering strong semantic
alignment and consistent results with manageable resource
requirements.

Effectiveness of differentiable method. As shown in
Tab. 2, we implement a baseline using grid search opti-
mization for individual asset layout adjustments. In this
grid search, we explore a range of translations and scales
defined by predetermined intervals, ensuring that each ob-
ject’s position and size were individually optimized. In both
DreamGaussian-based and TripoSR-based setups, our dif-
ferentiable method outperformed the grid search baseline,
demonstrating its superior ability to align objects contextu-
ally within the scene. We also conduct a user study with
25 participants, gathering 350 responses that demonstrate
our method’s significant superiority over the grid search ap-
proach. Furthermore, the differentiable method optimizes
20 layouts in 1.5 hours, whereas the grid search method re-
quires 4.5 hours and demonstrates lower accuracy.



Table 1. Comparison of different resolutions of renderer used in
layout alignment.

(a) DreamGaussian-based REPARO.

Resolution ‘ CLIP 1T PSNR 1 SSIM 1 LPIPS |

64 x 64 | 0.827 17.008 0.822  0.243
128 x 128| 0.828 17.315 0.829 0.231
256 x 256| 0.833 17.279 0.826  0.234
512 x 512| 0.828 17.189 0.825  0.237

(b) TripoSR-based REPARO.

Resolution| CLIP+ PSNR t SSIM 1 LPIPS |

64 x 64 | 0.821 17.769 0.865 0.214
128 x 128| 0.821 17.758 0.865 0.217
256 x 256| 0.822 17.751 0.865 0.216
512 x 512| 0.823 17.824 0.865 0.215

Table 2. Comparison of optimization methods. HP' is the mean
score of human preference.

(a) DreamGaussian-based REPARO.

Method |CLIP+ PSNR T SSIM t LPIPS | HP' 1

Gridsearch | 0.820 17.974 0850 0206 21.15%

Differentiable| 0.833 17.279 0.826 0.234 78.85%
(b) TripoSR-based REPARO.

Method |CLIP+ PSNR 1 SSIM 1 LPIPS | HP' 4

Gridsearch | 0.818 17911 0866 0210 20.58%

Differentiable | 0.822 17.751 0.865 0.216 79.42%

Feature matching for layout initialization. We implement
a simple feature matching initialization via DINO feature
map grid search between GT and prediction and compare
it with our learned layout alignment. As shown in Table 3,
the performance is slightly worse than the original method
without initialization, as feature matching introduces un-

necessary bias.
Table 3. Comparison of the effect of initialization based on feature
matching.

(a) DreamGaussian-based REPARO. (b) TripoSR-based REPARO.

Init.|CLIP T PSNR 1 SSIM 1 LPIPS | Init.|CLIP 1 PSNR 1 SSIM 1 LPIPS |

v 0818 17.262 0.824 0.235 v 10818 17.329 0.863 0.221
0.833 17.279 0.826 0.234 0.822 17.751 0.865 0.216

Ablation of semantic loss term. We conduct an abla-
tion study for the L, loss with a VGG [8] backbone us-
ing both DreamGaussian-based and TripoSR-based meth-
ods. As shown in Tab. 4, the results demonstrate that the
DINO-v2 backbone outperforms the VGG backbone in both
configurations. This advantage may come from DINO-v2’s
self-supervised learning method and large amounts of train-
ing data.

Impact of loss weight A on performance. Fig. 2 include
results adjusting the weight A of the semantic loss.

Table 4. Comparison of different L, backbone.

(a) DreamGaussian-based REPARO.

Ly Backbone | CLIP+ PSNR1 SSIM 1 LPIPS |

DINOv2 0.833 17.279 0.826  0.234
VGG 0.831 17.268 0.825  0.234

(b) TripoSR-based REPARO.

L Backbone | CLIP+ PSNR*+ SSIMt LPIPS |

DINOv2 (7] | 0.822 17.751 0.865  0.216
VGG [8] 0.820 17.748 0.865  0.217
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Figure 2. Ablation results of hyperparameter \.

Effectiveness of semantic loss. Fig. 3 shows qualitative
results comparing L, L, and L,+Ls. L4 consistently im-
proves spatial alignment and semantic plausibility although
quantitative gains in Table 2 appear marginal. These quali-
tative examples support the necessity of including L.
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Figure 3. Qualitative visualization of appearance loss and seman-
tic loss.

5. More qualitative results

We present additional qualitative results that are not pro-
vided by the GSO [3] dataset. As illustrated in the Figure 4,
these qualitative examples are selected from the benchmark
provided by ComboVerse [1]. During layout alignment, the
translation and rotation parameters of the assets are opti-
mized. The final results demonstrate that REPARO achieves
excellent spatial arrangement and semantic consistency.
Real-world photograph inputs. As shown in Figure 5
we test our method on realistic cases from the ScanNet++
dataset [10], including complex photographs like "’a desktop
with two remote controls” and "an office desk with two mon-
itors and two keyboards”. The results show that our method
effectively handles real-world inputs and accurately gener-
ates 3D layouts from photographs.
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Figure 4. Selected qualitative results from ComboVerse [1] benchmark.

Figure 5. Results of REPARO on the Scannet++ dataset.
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