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1. Dataset Details

We selected the scenes similar to those in S-VolSDF [15] in
both the DTU [7] dataset and the BlendedMVS [16] dataset.
For the DTU [7] dataset, the scenes include scans 21, 24,
34, 37, 38, 40, 82, 106, 110, 114, and 118. We evaluated
our method with both large-overlapping views and small-
overlapping views in each scene. For the BlendedMVS [16]
dataset, the scenes and sparse view indices are as follows:
Doll: 9, 10, 55; Egg: 9, 52, 59; Head: 22, 26, 27; Angel:
11, 39, 53; Bull: 32, 42, 47; Robot: 28, 34, 57; Dog: 2, 5,
25; Bread: 16, 21, 33; Camera: 10, 16, 60.

(a) Large-overlapping views

(b) Small-overlapping views

Figure 1. Visual comparison between large-overlapping views and
small-overlapping views.

Figure 1 presents a comparison between small-
overlapping views and large-overlapping views. Small-
overlapping views exhibit greater viewpoint variations,
while large-overlapping views have smaller angular differ-
ences. Therefore, sparse view reconstruction is more chal-
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lenging with small-overlapping views.

2. More Experiments
2.1. Additional Results on DTU
We also conduct experiments on the DTU dataset with
large-overlapping views and perform both quantitative
and visual comparisons with other overfitting-based,
generalization-based, and several dense-view reconstruc-
tion methods. The quantitative results of the Chamfer Dis-
tance are presented in Table 1, which demonstrates that
our method also achieves superior performance on large-
overlapping views.

Figure 3 presents a visual comparison of more recon-
struction results on DTU dataset with small-overlapping
views.

2.2. Additional Results on BlendedMVS
Fig. 4 shows the additional reconstruction results on the
BlendedMVS [16] dataset with small-overlapping views.
Other methods produce rough or incomplete results, while
our method can reconstruct more complete and detailed
meshes. In the scene of bread, although our method can
reconstruct the side, the large angles among the three views
make it impossible to use COLMAP [13] to obtain a sparse
point cloud for depth calibration. Therefore, the reconstruc-
tion of the side of the bread is inaccurate due to the lack of
depth supervision.

Ours (VisMVSNet) TransMVSNet MVSFormer MVSFormer+

Figure 2. Reconstruction results by different feature extractors.



Methods 21 24 34 37 38 40 82 106 110 114 118 Mean

NeuS [14] 2.46 2.82 1.05 6.90 1.22 6.95 1.71 1.13 3.35 0.72 2.72 2.82
NeuralWarp [3] 1.91 0.67 0.75 1.71 0.73 1.37 1.63 1.17 0.86 0.57 1.02 1.13
MonoSDF [18] 2.44 1.77 1.48 4.14 1.64 2.11 2.77 5.38 3.89 0.83 3.43 2.72
Vis-MVSNet [19] 1.68 0.97 0.55 2.69 0.79 1.63 1.28 0.97 0.43 0.47 0.87 1.12
MVSDF [20] 2.36 1.22 0.76 3.95 0.95 1.98 1.61 0.94 0.60 0.48 0.90 1.43
SparseNeuSft [9] 2.02 1.13 0.87 3.00 1.21 2.53 1.39 1.17 0.79 0.58 1.16 1.44
VolRecon [12] 1.55 1.27 0.81 2.63 0.99 1.65 1.44 1.20 1.37 0.74 1.23 1.35
ReTR [8] 1.47 1.05 0.69 2.31 0.83 1.44 1.32 1.09 0.77 0.59 1.06 1.15
UFORecon [10] 1.33 0.78 0.62 2.04 0.78 1.35 1.21 0.87 0.60 0.57 0.90 1.00
S-VolSDF [15] 1.81 0.90 0.79 2.28 1.04 1.61 1.80 1.01 0.73 0.71 1.21 1.26
NeuSurf [5] 3.01 0.78 0.99 2.35 0.85 1.55 1.14 0.74 0.49 0.39 0.75 1.19
SparseCraft [17] 1.80 1.17 0.68 1.74 0.90 1.80 1.37 0.80 0.56 0.44 0.77 1.09
FatesGS [6] 2.87 0.64 1.53 1.94 1.52 1.17 1.06 0.75 0.48 0.41 0.78 1.20
Ours 1.44 0.66 0.49 1.68 0.71 1.28 1.19 0.66 0.45 0.39 0.75 0.88

Table 1. Quantitative results on DTU dataset with 3 large-overlapping images. The methods are divided into three categories, from top
to bottom: (1) dense-view reconstruction methods related to ours, (2) generalization-based sparse-view reconstruction methods, and (3)
overfitting-based sparse-view reconstruction methods. Bold results are the best score.

2.3. Efficiency Comparison

we compare the efficiency of all methods specifically de-
signed for sparse view reconstruction in the baseline, in-
cluding both generalization-based methods and overfitting-
based methods. All methods are tested on a single NVIDIA
RTX 3090 GPU, with the tests including training time and
GPU memory usage, as detailed in Table 2. Although
generalization-based methods can obtain reconstruction re-
sults in a few minutes, they typically require several days
for pretraining and consume more GPU memory. More im-
portantly, their generalization performance on new scenes
is unsatisfactory, especially when input views have small
overlaps. Among the various overfitting-based methods,
our method achieves a comparable time consumption to
SVolSDF [15]. Although SparseCraft [17] and FatesGS
[6] have less time occupation, our method delivers higher-
quality reconstruction results.

2.4. Additional Ablation Study

To validate the effectiveness of feature extractors from re-
cent multi-view stereo methods within our framework, we
conduct experiments by replacing the Vis-MVSNet feature
extractor used in our method with those from TransMVSNet
[4], MVSFormer [1], and MVS-Former++ [2], respectively.
Table 3 presents the quantitative results on the DTU dataset
under small-overlapping view setting. Figure 2 shows the
visual comparison. Although these more recent methods re-
ported better performance than the one we used on standard
multi-view stereo benchmarks, we do not observe signifi-
cant differences among them in our experiments.

Methods Training Time GPU Mem. UsagePre-Training Per-scene

SparseNeuSft [9] ∼ 2.5 days 20 mins 7 GB
VolRecon [12] ∼ 2 days - 17 GB
GenSft [11] ∼ 3 days 25 mins 17 GB
ReTR [8] ∼ 3 days - 22 GB
UFORecon [10] ∼ 10 days - 23 GB
MonoSDF [18] - 6 hours 14 GB
S-VolSDF [15] - 3 hours 4 GB
NeuSurf [5] - 14 hours 8 GB
SparseCraft [17] - 10 mins 10 GB
FatesGS [6] - 14 mins 4 GB
Ours - 3.5 hours 8 GB

Table 2. Efficiency Comparison of sparse view construction meth-
ods. The GPU memory usage is obtained during training.
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