
Supplementary Material
Algorithm 1 The training pipeline of NCU.
Input: The CLIP model {fv, ft} pre-trained on datasetD′, fine-tuning datasetD ⊆ D′, m learnable prompt tokens, margin

parameters [α, β], forget ratio P%, scaling factor λ, Sinkhorn regularization ϵ, and balanced factor γ.
// Learning Hardest Negative Semantics
for e = 1 : HN_Epochs do

for n = 1 : num_steps do
Sample a batched samples B = {(vi, ti)}Ni=1 fromD

// identifying the retained set
W = {wi}Ni=1, wP = QP (W)
DRT = {(vi, ti) | wi > wP ,∀(vi, ti) ∈ B}
// updating
Train the prompt and ft onDRT by minimizing LHN

// Unlearning the Twin Noisy Correspondence
for e = 1 : UL_Epochs do

for n = 1 : num_steps do
Sample a batched samples B = {(vi, ti)}Ni=1 fromD

// identifying the forget and retained set
W = {wi}Ni=1, wP = QP (W)
DFG = {(vi, ti) | wi ≤ wP ,∀(vi, ti) ∈ B}, DRT = {(vi, ti) | wi > wP ,∀(vi, ti) ∈ B}
Construct the mask matrix M byDFG andDRT

Calculate the hardest-negative guided alignment T
// updating
Train the fv and ft on B by minimizing LUL

Output: The CLIP model {fv, ft} with strong robustness.

Algorithm 2 Sinkhorn algorithm for Calculating Eq.(9).

Input: Cost matrix C̄ ∈ RN×(N+1)
+ , mask matrix M ∈

RN×(N+1)
+ , row distribution µ = 1

N 1N , column
distribution ν̄ = 1

N+11N+1, Sinkhorn regulariza-
tion parameter ϵ, and max iterations itmax.

Initialize K = M ⊙ e
−C̄
ϵ , b← 1N+1, it← 0

// Run Sinkhorn iterations
while it ≤ itmax and a, b not convergence do

a← µ
Kb // per-element division

b← ν̄
K⊤a

Output: OT Plan Γ̂∗ = diag(a)Kdiag(b).

1. Training Pipeline

In this section, we summarize the training pseudo-code of
NCU in Algorithm. 1.

2. Sinkhorn Solver for Masked OT

In this section, we detail the fast approximation for calcu-
lating the optimal transport plan. To avoid the high com-
putational overhead of the exact linear programming solver,

we adopt the entropy-regularized OT model that seeks an
approximate solution of the OT plan by the fast Sinkhorn-
Knopp algorithm. Algorithm. 2 presents the detailed
Sinkhorn process. We could observe that the Sinkhorn’s it-
eration involves only matrix multiplication and exponential
operations, making it computationally efficient.

3. Dataset Details

3.1. Fine-tuning Datasets
We utilize three popular vision-language datasets at
different scales and noise: Conceptual Captions 3M
(CC3M) [18], Conceptual Captions 12M (CC12M) [2], and
YFCC15M-R (provided by[9], an LLM-recaptioned subset
from the original YFCC100M [20]). The details are as fol-
lows:

CC3M consists of 3.3 million image-caption pairs fil-
tered from 5 billion webpage content, where image descrip-
tions are sourced from the HTML alt-text attribute. As some
image URLs in the original dataset have expired, we employ
the version provided by Hugging Face1, which comprises
2,905,954 pairs for training and 13,443 pairs for validation.
CC3M is estimated to include a minimum of 3% false pos-

1https://huggingface.co/datasets/pixparse/cc3m-
wds
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itive pairs in which some unknown images and captions are
mismatched or weakly matched.

CC12M is produced in a similar way to CC3M. It con-
tains 12.4 million image-caption pairs that cover a broader
range of topics and visual concepts from the real world. As
some image URLs in the original dataset are broken, we
employ the version provided by Hugging Face2 including
10,968,539 training Paris.

YFCC15M-R is a subset provided by RWKV-CLIP [9]
from the large-scale multimedia dataset YFCC100M [20],
where the LLaMA3-8B model is used to synthesize di-
verse description. Consequently, YFCC15M-R is a cleaner
dataset with fewer false positive pairs. we employ the ver-
sion provided by Hugging Face3 including 15,060,992 pairs
(we drop the last batch samples).

3.2. Downstream Datasets

Dataset Classes Train Size Test Size
Caltech101 [8] 102 3060 6085
CIFAR-10 [12] 10 50000 10000
CIFAR-100 [12] 100 50000 10000
DTD [4] 47 3760 1880
FGVC Aircraft [14] 100 6667 3333
RenderedSST2 [17] 2 6920 1821
Flowers102 [15] 102 2040 6149
Food101 [1] 101 75750 25250
GTSRB [19] 43 26640 12630
OxfordPets [16] 37 3680 3669
RESISC45 [3] 45 25200 6300
SUN397 [21] 397 19850 19850
EuroSAT [10] 10 10000 5000
StanfordCars [11] 196 8144 8041
STL10 [5] 10 1000 8000
ImageNet1K [6] 1000 1281130 5000

Table 1. Dataset sizes for downstream image classification tasks.

Dataset Test Size of Images Test Size of Captions
Flickr30K [22] 1000 5000
MSCOCO [13] 5000 25000

Table 2. Dataset sizes for downstream image-text retrieval tasks.

Image Classification. We evaluate the zero-shot transfer
ability for image classification on ImageNet and 15 widely
used downstream datasets. The specific testing informa-
tion about the downstream classification datasets is pre-

2https : / / huggingface . co / datasets / pixparse /
cc12m-wds

3https://huggingface.co/datasets/Kaichengalex/
YFCC15M

sented in Tab. 1. Besides, we use 4 representative down-
stream datasets, i.e., SUN397, OxfordPets, Food101, and
ImageNet1K, to conduct the linear probing experiments.
The detailed training size can also be found in Tab. 1.

Image-text Retrieval. We apply our approach to two
standard image-text retrieval datasets, Flickr30K and
MSCOCO, to evaluate the zero-shot retrieval performance.
Both datasets have five corresponding text annotations for
each image, and the detailed information is shown in Tab. 2.

4. Implementation Details
Source of Pre-trained CLIP. A key advantage of NCU
is its ability to endow robustness to open-source pre-trained
models, thus preventing the computational overhead of
training from scratch. Following this point, we select
pre-trained CLIP models (ViT-B/16 architecture) provided
by the LaCLIP [7] that were pre-trained on CC3M and
CC12M, and the model weights can be accessed in github4.
For the pre-trained CLIP with ViT-B/32, we used our im-
plementation since there were no publicly available model
weights.

Config Value
Batch size 2,048
Optimizer AdamW
Learning Rate for HN 3e-4
Learning Rate for UL 5e-5
Epochs for HN 2
Epochs for UL 8
Total Epochs 10
Adam Beta β1, β2 = (0.9, 0.98)
Adam Eps 1e-8
weight_decay 0.2
Ratio P (%) 10
Bound Margin α, β = (−0.7,−0.2)
Scaling factor λ 10
Balance factor γ 0.7
Sinkhorn regularization ϵ 0.03

Table 3. Hyper-parameters of NCU on CC3M.

Robust Fine-tuning. We employed the standard ViT-
B/16 and ViT-B/32 as our visual encoders. Visual and
textual features are projected into a shared 512-D space.
Specifically, we conducted experiments using both ViT-
B/16 and ViT-B/32 on CC3M and CC12M, and employed
ViT-B/32 for experiments on YFCC15M-R. All experi-
ments are conducted on 16 NVIDIA V100 GPUs. And
the detailed fine-tuning settings for CC3M, CC12M, and

4https://github.com/LijieFan/LaCLIP
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YFCC15M-R can be found in Tab. 3, Tab. 4, and Tab. 5,
respectively.

Zero-shot Classification. We implement the identical
prompt ensemble strategy as CLIP, where each class label
is expanded to sentences using a collection of prompt tem-
plates, such as "a tattoo of the [classname]" or "a photo
of a nice [classname]". The specific prompt templates for
different downstream tasks can be found in 5.

Config Value
Batch size 2,048
Optimizer AdamW
Learning Rate for HN 3e-4
Learning Rate for UL 5e-5
Epochs for HN 2
Epochs for UL 8
Total Epochs 10
Adam Beta β1, β2 = (0.9, 0.98)
Adam Eps 1e-8
weight_decay 0.2
Ratio P (%) 5
Bound Margin α, β = (−0.7,−0.2)
Scaling factor λ 10
Balance factor γ 0.7
Sinkhorn regularization ϵ 0.03

Table 4. Hyper-parameters of NCU on CC12M.

Config Value
Batch size 2,048
Optimizer AdamW
Learning Rate for HN 3e-4
Learning Rate for UL 5e-5
Epochs for HN 2
Epochs for UL 8
Total Epochs 10
Adam Beta β1, β2 = (0.9, 0.98)
Adam Eps 1e-8
weight_decay 0.2
Ratio P (%) 1
Bound Margin α, β = (-0.7, -0.2)
Scaling factor λ 10
Balance factor γ 0.3
Sinkhorn regularization ϵ 0.03

Table 5. Hyper-parameters of NCU on YFCC15M-R.

5https://github.com/openai/CLIP/blob/main/data/
prompts.md

Linear Probing. Following the mainstream setting, we
train a linear classifier using L-BFGS on features extracted
from the frozen visual encoder. For all linear probing exper-
iments, we set the batch size to 1024 and use the AdamW
optimizer with 0.01 weight decay. The learning rate is ini-
tialized at 3e-4 and decreased with a cosine schedule. Clas-
sifiers are trained for 60, 60, 60, and 90 epochs on SUN397,
OxfordPets, Food101, and ImageNet1K, respectively.
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