
Improved Noise Schedule for Diffusion Training

Supplementary Material

1. Detailed Implementation for Noise Schedule

We provide a simple PyTorch implementation for the
Laplace noise schedule and its application in training.
This example can be adapted to other noise sched-
ules, such as the Cauchy distribution, by replacing the
laplace noise schedule function. The model ac-
cepts noisy samples xt, timestep t, and an optional con-
dition tensor c as inputs. This implementation supports pre-
diction of {x0,v, ϵ}.

2. Details for Proposed Laplace and Cauchy
Design

For a Laplace distribution with location parameter µ and
scale parameter b, the probability density function (PDF) is
given by:

p(λ) =
1

2b
exp

(
−|λ− µ|

b

)
(1)

The cumulative distribution function (CDF) can be de-
rived as follows:

1− t =

∫ λ

−∞
p(x) dx

=

∫ λ

−∞

1

2b
exp

(
−|x− µ|

b

)
dx

=
1

2

(
1 + sgn(λ− µ)

(
1− exp

(
−|λ− µ|

b

)))
To obtain λ as a function of t, we solve the inverse func-

tion:

λ = µ− bsgn(0.5− t) ln(1− 2|t− 0.5|)

For a Cauchy distribution with location parameter µ and
scale parameter γ, the PDF is given by:

f(λ;µ, γ) =
1

πγ

[
1 +

(
λ− µ

γ

)2
]−1

(2)

The corresponding CDF is:

F (λ;µ, γ) =
1

2
+

1

π
arctan

(
λ− µ

γ

)
(3)

To derive λ(t), we proceed as follows:

1− t = F (λ;µ, γ) (4)

1− t =
1

2
+

1

π
arctan

(
λ− µ

γ

)
(5)

t =
1

2
− 1

π
arctan

(
λ− µ

γ

)
(6)

Solving for λ, we obtain:

λ(t) = µ+ γ tan
(π
2
(1− 2t)

)
(7)

3. Combination between Noise schedule and
Timestep Importance Sampling

We observe that incorporating importance sampling of
timesteps into the cosine schedule bears similarities to the
Laplace schedule. Typically, the distribution of timestep t
is uniform U [0, 1]. To increase the sampling frequency of
middle-level timesteps, we propose modifying the sampling
distribution to a simple polynomial function:

p(t′) =

{
C · t′n, t′ < 1

2

C · (1− t′)
n
, t′ ≥ 1

2 ,
(8)

where C = (n + 1)2n is the normalization factor ensuring
that the cumulative distribution function (CDF) equals 1 at
t = 1.

To sample from this distribution, we first sample t uni-
formly from (0, 1) and then map it using the following func-
tion:

t′ =

{(
1
2

) n
n+1 t

1
n+1 , t < 1

2

1−
(
1
2

) n
n+1 (1− t)

1
n+1 , t ≥ 1

2 ,
(9)

We incorporate the polynomial sampling of t into the co-
sine schedule λ = −2 log tan πt

2 , whose inverse function is
t = 2

π arctan exp
(
−λ

2

)
. Let us first consider the situation

where t < 1
2 :

(
1

2

) n
n+1

t
1

n+1 =
2

π
arctan exp

(
−λ

2

)
(10)

t = 2n
(
2

π
arctan exp

(
−λ

2

))n+1

(11)

We then derive the expression with respect to dλ:

1 import torch
2

3

4 def laplace_noise_schedule(mu=0.0, b=0.5):
5 # refer to Table 1
6 lmb = lambda t: mu - b * torch.sign(0.5 - t) * \
7 torch.log(1 - 2 * torch.abs(0.5 - t))
8 snr_func = lambda t: torch.exp(lmb(t))
9 alpha_func = lambda t: torch.sqrt(snr_func(t) / (1 + snr_func(t)))

10 sigma_func = lambda t: torch.sqrt(1 / (1 + snr_func(t)))
11

12 return alpha_func, sigma_func
13

14

15 def training_losses(model, x, timestep, condition, noise=None,
16 predict_target="v", mu=0.0, b=0.5):
17

18 if noise is None:
19 noise = torch.randn_like(x)
20

21 alpha_func, sigma_func = laplace_noise_schedule(mu, b)
22 alphas = alpha_func(timestep)
23 sigmas = sigma_func(timestep)
24

25 # add noise to sample
26 x_t = alphas.view(-1, 1, 1, 1) * x + sigmas.view(-1, 1, 1, 1) * noise
27 # velocity
28 v_t = alphas.view(-1, 1, 1, 1) * noise - sigmas.view(-1, 1, 1, 1) * x
29

30 model_output = model(x_t, timestep, condition)
31 if predict_target == "v":
32 loss = (v_t - model_output) ** 2
33 elif predict_target == "x0":
34 loss = (x - model_output) ** 2
35 else: # predict_target == "noise":
36 loss = (noise - model_output) ** 2
37

38 return loss.mean()

dt

dλ
= 2n

(
2

π

)n+1

(n+ 1)

(
arctan exp

(
−λ

2

))n

(12)

× 1

1 + exp(−λ)

1

−2
exp(−λ/2) (13)

p(λ) = (n+ 1)
4n

π(n+1)
arctann exp

(
−λ

2

)
exp(− 1

2λ)

1 + exp(−λ)
(14)

Considering symmetry, we obtain the final distribution

with respect to λ as follows:

p(λ) = (n+ 1)
4n

π(n+1)
arctann exp

(
−|λ|

2

)
exp(− 1

2 |λ|)
1 + exp(−|λ|)

(15)

We visualize the schedule discussed above and compare
it with Laplace schedule in Figure 1. We can see that b = 1
for Laplace and n = 2 for cosine-ply matches well. We also
conduct experiments on such schedule and present results
in Table 1. They perform similar and both better than the
standard cosine schedule.

We visualize the schedules discussed above and com-
pare them with the Laplace schedule in Figure 1. The re-
sults demonstrate that Laplace with b = 1 and cosine-ply
with n = 2 exhibit a close correspondence. To evaluate the

Figure 1. Visualization of p(λ) for Laplace schedule and cosine
schedule with polynomial timestep sampling.

performance of these schedules, we conducted experiments
and present the results in Table 1. Both the Laplace and
cosine-ply schedules show similar performance, and both
outperform the standard cosine schedule.

4. Flow Matching with Logit-Normal Sampling
In Stable Diffusion 3 [1] and Movie Gen [5], logit-normal
sampling is applied to improve the training efficiency of
flow models. To better understand this approach, we present
a detailed derivation from the logit-normal distribution to
the probability density function of logSNR λ.

Let the Logit transformation X = logit(t) of random
variable t follow a normal distribution:

X ∼ N (µ, σ2) (16)

Then, the probability density function of t is:

p(t;µ, σ) =
1

σ · t · (1− t) ·
√
2π

exp

(
− (logit(t)− µ)2

2σ2

)
, t ∈ (0, 1)

(17)
where logit(t) = log

(
t

1−t

)
, and µ and σ are constants.

Consider the variable transformation:

λ = 2 log

(
1− t

t

)
(18)

Our goal is to find the probability density function p(λ) of
random variable λ.

First, we solve for t in terms of λ:

λ

2
= log

(
1− t

t

)
e

λ
2 =

1− t

t

1− t = te
λ
2

1 = t
(
1 + e

λ
2

)
t(λ) =

1

1 + e
λ
2

Next, we calculate the Jacobian determinant
∣∣ dt
dλ

∣∣:
t(λ) =

1

1 + e
λ
2

dt

dλ
= − e

λ
2 · 1

2

(1 + e
λ
2)2∣∣∣∣ dtdλ

∣∣∣∣ = e
λ
2

2(1 + e
λ
2)2

Using the variable transformation formula:

p(λ) = p(t(λ);µ, σ) ·
∣∣∣∣ dtdλ

∣∣∣∣ (19)

We calculate p(t(λ);µ, σ):

logit(t(λ)) = log

(
t(λ)

1− t(λ)

)
= log

 1

1+e
λ
2

e
λ
2

1+e
λ
2

 = −λ

2

p(t(λ);µ, σ) =
(1 + e

λ
2)2

σe
λ
2

√
2π

exp

(
− (µ+ λ

2)
2

2σ2

)
Multiplying by the Jacobian determinant:

p(λ) =
(1 + e

λ
2)2

σe
λ
2

√
2π

exp

(
− (µ+ λ

2)
2

2σ2

)
· e

λ
2

2(1 + e
λ
2)2

=
1

2σ
√
2π

exp

(
− (λ+ 2µ)2

8σ2

)
Therefore, the probability density function of λ is:

p(λ) =
1

2σ
√
2π

exp

(
− (λ+ 2µ)2

8σ2

)
, λ ∈ (−∞,+∞)

(20)
This shows that λ follows a normal distribution with

mean −2µ and variance 4σ2:

λ ∼ N (−2µ, 4σ2) (21)

The mean and variance are:

E[λ] = −2µ

Var(λ) = 4σ2

To verify normalization, we integrate p(λ) over its do-
main:∫ +∞

−∞
p(λ) dλ =

∫ +∞

−∞

1

2σ
√
2π

exp

(
− (λ+ 2µ)2

8σ2

)
dλ

Let z =
λ+ 2µ

2
√
2σ

⇒ dλ = 2
√
2σ dz

=
2
√
2σ

2σ
√
2π

∫ +∞

−∞
e−z2

dz

=
1√
π
· √π = 1

Iterations 100,000 200,000 300,000 400,000 500,000

Cosine-ply (n = 2) 28.65 13.77 10.06 8.69 7.98
Laplace (b = 1) 28.89 13.90 10.17 8.85 8.19

Table 1. Performance comparison of cosine-ply (n = 2) and Laplace (µ = 1) schedules over different iteration counts

Thus, p(λ) satisfies the normalization condition for prob-
ability density functions.

We compare the standard cosine scheudle [4], Flow
Matching [2, 3], and Flow Matching with Logit-normal
sampling [1, 5]. The probability density functions of these
schedules are visualized in Figure 2. Our analysis reveals
that Flow Matching with Logit-normal sampling concen-
trates more probability mass around λ = 0 compared to
both the standard Cosine and Flow Matching schedules, re-
sulting in improved training efficiency [1, 5].

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

λ

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

p
(λ

)

Probability Density Functions

Flow Matching w/ Logit-Normal

Flow Matching w/o Logit-Normal

Cosine

Figure 2. Comparison of probability density functions for differ-
ent flow matching approaches. The plot shows three distributions:
Flow Matching with Logit-Normal sampling (blue), Flow Match-
ing without Logit-Normal sampling (green), and the Cosine sched-
ule (orange).

5. Importance of Time Intervals

To investigate the significance of training intervals, we con-
ducted controlled experiments using a simplified setup. We
divided the time range (0, 1) into four equal segments:
bini =

(
i
4 ,

i+1
4

)
, i = 0, 1, 2, 3. We first trained a base

model M over the complete range (0, 1) for 1M iterations,
then fine-tuned it separately on each bin for 140k iterations
to obtain four specialized checkpoints mi, i = 0, 1, 2, 3.

For evaluation, we designed experiments using both the
base model M and fine-tuned checkpoints mi. To assess
the importance of each temporal segment, we selectively
employed the corresponding fine-tuned checkpoint during
its specific interval while maintaining the base model for
remaining intervals. For example, when evaluating bin0, we
used m0 within its designated interval and M elsewhere.

The FID results across these four experimental configu-
rations are presented in Figure 3. Our analysis reveals that
optimizing intermediate timesteps (bin1 and bin2) yields

superior performance, suggesting the critical importance of
these temporal regions in the diffusion process.

Figure 3. Comparative analysis of interval-specific fine-tuning ef-
fects. When sampling within interval

(
1
4
, 2
4

)
, “Bin1” indicates the

use of fine-tuned weights m1, while M is used for other inter-
vals. “Baseline” represents the use of base model M throughout
all intervals, and “All Tuned” denotes the application of interval-
specific fine-tuned models within their respective ranges.

References
[1] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim En-

tezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz,
Axel Sauer, Frederic Boesel, et al. Scaling rectified flow trans-
formers for high-resolution image synthesis. arXiv preprint
arXiv:2403.03206, 2024. 3, 4

[2] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian
Nickel, and Matthew Le. Flow matching for generative mod-
eling. In The Eleventh International Conference on Learning
Representations, 2022. 4

[3] Xingchao Liu, Chengyue Gong, et al. Flow straight and fast:
Learning to generate and transfer data with rectified flow. In
The Eleventh International Conference on Learning Repre-
sentations, 2022. 4

[4] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR,
2021. 4

[5] Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra,
Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-
Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of
media foundation models. arXiv preprint arXiv:2410.13720,
2024. 3, 4

	Detailed Implementation for Noise Schedule
	Details for Proposed Laplace and Cauchy Design
	Combination between Noise schedule and Timestep Importance Sampling
	Flow Matching with Logit-Normal Sampling
	Importance of Time Intervals

