Principles of Visual Tokens for Efficient Video Understanding

Supplementary Material

1. Additional Experimental Results

Looking at the simplicity of LITE, one could think that
learning to predict the oracle is particularly easy and
straightforward. After all, if an MLP can learn this, po-
tentially a more sophisticated model should outperform it.
This section describes the variants evaluated, giving addi-
tional insights and showcasing that token-selection is far
from trivial.

Cleaning the oracle training data. Visualization suggests
that the oracle is somewhat noisy. Could we could clean
the artifacts to improve the performance of the oracle? We
explore several cleaning strategies:

» Edges. Grad-CAM often produces noisy high activations
at image boundaries. We decrease the values on edges to
reduce boundary artifacts.

* Isolated peaks. The raw value of the oracle often has iso-
lated peaks, which can misrepresent the true important
areas. We remove small areas below a certain threshold.

» Sharpening the distribution. The original distribution of
the oracle is often smooth. We transform oracle values
to amplify the differences between high and low values,
making the distribution more concentrated around O or 1.

Including global information. The LITE model assesses
the value of a token based solely on the information of one
token. This is a simplification of the way tokens are used,
and overlooks qualities such as diversity of information,
relationship, etc. We experimented with adding a global
branch to LITE , where instead of simply using the value of
a token in isolation, we use several 3D convolutions to ac-
quire the nearby context information. Then, a self-attention
operation is employed to capture long-range dependencies
and model interactions between tokens, allowing the net-
work to integrate global information effectively.

Adding complexity to the selector. A 3-layer MLP is a
fairly simple model, and potentially we should be able to
do better with a more sophisticated model. Adding layers
or using other architectures can potentially lead to better
results, even at the cost of an increased amount of computa-
tion. We experimented with several aspects. We used more
layers (up to 5) to add capacity to the MLP. We also tried
other architectures and replace the MLP with single or mul-
tiple transformer blocks.

It is remarkable to see in Tab. | that none of these vari-
ants significantly outperform the 3-layer MLP architecture.
This points to a striking conclusion: the oracle is extremely
hard to predict, and the MLP achieves a balance between
accuracy and avoiding overfitting.

Model Top-1  Top-5
MLP selector 65.03  88.52
Edges 64.98 88.92
Isolated peaks 64.83  88.67
Sharpen distribution  64.80  87.98
Global branch 65.10  88.55

Table 1. Results of impact of different variants of data cleaning
strategies and integration of global branch. Results are tested with
4K samples of the SS-V2 test set.

Adaptive budget. We test the adaptive budget results on the
Kinetics-400 dataset, as detailed in Tab. 2. These results
confirm consistency with our previous tests on the SS-V2
dataset. The LITE++ model is promising, enabling us to
save nearly 30% of GFLOPs compared to the LITE model,
while maintaining the accuracy drop within 0.4.

Model GFLOPs x views Top-1
VideoMAE-LITE( 118x2x3 81.14
VideOMAE-LITE++70 84X2X3¢29% 80.75‘L()_4
VideoMAE-LITEs5, 80x2x3 80.36
VideOMAE-LITE++5Q 62X2X3¢23% 80.02“)_3

Table 2. Result comparison between LITE and LITE++ for
Kinetics-400 dataset. The blue numbers indicate the reduced per-
centage of GFLOPs and accuracy.

Adding complexity to the selector. We test more sophis-
ticated models as selectors for token selection, as shown in
Tab. 3. The experimental results indicate that using more
complex architectures does not significantly improve accu-
racy but does substantially increase GFLOPs usage. There-
fore, using simple 3-layer MLP is the optimal choice in bal-
ancing accuracy and GFLOPs .

Model GFLOPs (Selector / Total) Top-1  Top-5
3-layer MLP 0.5/80 69.91 91.99
S-layer MLP 0.6/80 69.79  91.97

1-layer Transformer Block 14.9/95 69.96  92.07

Table 3. Results of using different selectors for token selection on
the SS-V2 dataset, with a P-Ratio maintained at 0.5. Each video
in this specific set of experiments was evaluated using (2 temporal
clip x 3 spatial crops) views.

Select tokens from different layers. Table 4 displays the
results of our test involving token selection at various posi-



tions within the network. For instance, the experiment with
block number of 0 indicates that token selection was per-
formed before the first transformer block. Different block
numbers correspond to token selection occurring before var-
ious transformer blocks. The experimental results reveal
that token selection at the beginning of the network yields
the best outcomes, whereas selection in the middle pro-
duces the worst results. Additionally, initiating token selec-
tion early in the process helps reduce GFLOPs significantly.
Therefore, in the LITE model, we position the selector be-
fore the first transformer block and conduct token selection
at the outset.

Model Block No. GFLOPs Top-1 Top-5
VideoMAE - 181 70.16  92.12
VideoMAE-LITE5 0 80 69.43  90.92
VideoMAE-LITE5 2 97 67.19 89.94
VideoMAE-LITEj5, 5 122 66.88  90.05
VideoMAE-LITEs3, 8 147 68.29  90.96

Table 4. Results of token selection before different transformer
blocks using the LITE model on the SS-V2 dataset, with a P-Ratio
maintained at 0.5. For a quick test, each video in this specific set
of experiments was evaluated using (1 temporal clip x 3 spatial
Crops) views.

Hyperparameters for training the selector. For training
the LITE selector, we use the AdamW optimizer with a
learning rate of le-4, a batch size of 4, and train for 20
epochs.

Composition of GFLOPs. The GFLOPs reported in Tables
1,2, 3,5 and 6 in the main paper already included the addi-
tional computation from LITE / LITE++. We have included
a breakdown in the table below. Both LITE and LITE++
modules require negligible compute, needing only 1% and
3% of the total computation respectively (with P-Ratio of
0.5). We will include this analysis in the revision for further
clarity.

Backbone LITE MoviNet Total
LITE 79.84 0.50 - 80.34
LITE++ 63.00 0.50 1.49 64.99

Table 5. Composition of GFLOPs in LITE.

Backbone generalization. The table below shows exper-
iments of another backbone on Video Swin Transformer
with SS-V2 dataset. The reported GFLOPs have already ac-
counted for the additional computation introduced by LITE.
Results demonstrate that our model achieves strong general-
izability across different backbones with different pretrain-
ing methods.

Model GFLOPs x views Top-1 Top-5
VideoSwin 321x1x3 69.6 92.7
VideoSwin-LITEgq 288x1x3 69.4 92.6
VideoSwin-LITEgq 255x1x3 69.0 92.4
VideoSwin-LITE~q 226x1x3 68.2 92.0

Table 6. Results of LITE Model with Video Swin Transformer on
the SS-V2 dataset.

Correlation between MoviNet confidence and video
difficulty. The figure below shows a clear correlation
between class-wise MoviNet confidence and VideoMAE
model accuracy, with a Spearman correlation coefficient of
0.78. Classes with higher accuracy typically exhibit higher
MoviNet confidence. Therefore, based on our Principle
5 and the trend illustrated below, it is reasonable to use
MoviNet confidence as an indicator of video difficulty.

Trend Between Class Accuracy and MoviNet Confidence
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Figure 1. Correlation between class-wise MoviNet confidence and
VideoMAE model accuracy on SS-V2 dataset.

2. Additional Visualizations

We present additional visualizations of token selection by
our selector from the SS-V2 and Kinetics-400 datasets.
These include the original RGB frames, along with the top
50%, top 30%, and top 10% of tokens selected by our se-
lector. The non-white areas indicate the tokens that have
been selected. Figures 2 to 5 show the visualization of the
Kinetics-400 dataset, each labeled with its class. Figures 6
to 9 show the visualization of the SS-V2 dataset, each la-
beled with its class.
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Visualization of token selection by LITE in the Kinetics-400 dataset. Class label: “Skiing slalom
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Figure 3. Visualization of token selection by LITE in the Kinetics-400 dataset. Class label: “Canoeing or kayaking
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Figure 4. Visualization of token selection by LITE in the Kinetics-400 dataset. Class label: “Riding scooter”.
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Figure 5. Visualization of token selection by LITE in the Kinetics-400 dataset. Class label: “Playing accordion”.
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Figure 6. Visualization of token selection by LITE in the SS-V2 dataset. Class label: “Putting something in front of something”.
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Figure 7. Visualization of token selection by LITE in the SS-V2 dataset. Class label: “Pretending to turn something upside down”.
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Figure 8. Visualization of token selection by LITE in the SS-V2 dataset. Class label: “Turning something upside down”.
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Figure 9. Visualization of token selection by LITE in the SS-V2 dataset. Class label: “Putting something next to something”.
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