Supplementary Material

A. Additional model details

Recurrent module In the recurrent module, we compress
and contextualize the input data in stages [54], following the
design ideas of SEA-RAFT [54], as illustrated in Figure 5.
We use parallel 2-layer CNNs (with 3 x 3 kernels) on the
correlation field and the motion field, then concatenate these
feature maps, and merge them with a 1 x 1 convolution. We
then concatenate the visibility map, confidence map, and
appearance features, and merge them to 256 channels with
another 1 x 1 convolution. We then apply three “space-
time” blocks, where the spatial part is a 2D ConvNeXt block
(with a 7 x 7 kernel) and the temporal part is a pixel-aligned
transformer block (attending the full subsequence span .5).
By pixel-aligned, we mean that attention only happens along
the temporal axis (i.e., with cost quadratic in S = 16), and
this is done for every pixel in parallel. We note that an
important convenience of our design is that all of the tensors
in this stage are aligned with the “query” frame; therefore
pixel-aligned attention is attention between corresponding
pixels. After the interleaved spatial and temporal blocks
propagate tracking-related information across our window,
we emit a new hidden state, and decode this state into explicit
revisions for visibility, confidence, and motion. Following
SEA-RAFT [54], we only use half of the feature channels
for our recurrent module’s hidden state, as shown by the
“split” step in Figure 5, which saves memory (reducing the
number of output channels from 260 to 132) and may also
stabilize recurrence.

Model layers The ConvNeXt blocks are standard: layer-
scaled kernel-7 grouped convolution — layer norm — expan-
sion linear layer (factor 4) - GELU — reduction linear layer
(factor 4) — residual add — linear layer. The pixel-aligned
temporal blocks also have a standard form: layer-scaled
transformer block with 8 heads and expansion factor 4 —
residual add — linear layer. To inform the attention layers on
frame ordering, we add 1D sinusoidal position embeddings
to the “context” features of a subsequence (see Figure 3 from
the main paper), broadcasting these embeddings across the
spatial axes. Note that our temporal position embedding is
with respect to a subsequence; the model unaware of total
video length, and we give no information about the anchor
frame’s original position in the timeline.

AllTracker-Tiny For AllTracker-Tiny, we use a BasicEn-
coder backbone with channel dimension 128, making only
2.63M parameters (out of 6.29M total), and leave the rest of
the architecture unchanged. We use this model’s featuremap
as both the “context” features and the RNN hidden state
initialization, rather than splitting a 256-channel featuremap
into these two parts.

Initialization strategy A close comparison of our model

corr. volumes motion

visibility confidence features

v
Indexing

Conv3x3 Conv3x3
RelLU RelLU

I_.m<_l

Convixi

context hidden
features state init

'
RelU

i Convixi
attention on L

temporal ConvNextBlock

axis, for all PixelAttnBlock
pixels in .
parallel Convixi
Conv3x3 e Conv3x3 Conv3x3
ReLU . ReLU ReLU
. new . .
Conv3x3 hidden Convix1 Conv3x3
vzl) state 5
visibility ~ confidence upsampling motion
revision revision weights revision

Figure 5. Detailed view of iterative refinement block. We con-
solidate data from visibility, confidence, correlation, motion, and
appearance features into a single feature map, then interleave con-
volutional spatial blocks and pixel-aligned temporal blocks, and
output revisions to the features, visibility, confidence, and motion.
This refinement process is iterated 4 times (with shared weights).

architecture versus SEA-RAFT [54] will reveal that we do
not follow SEA-RAFT’s choice to directly regress an “ini-
tial” optical flow estimate with a secondary CNN. Our main
reason for omitting this is to save memory. We also note
that when frame gaps are sufficiently large, it may in fact be
impossible to estimate optical flow without temporal context
(e.g., out-of-bounds motion of 200 pixels vs. 300 pixels
appears identical), and therefore the flow regression from
SEA-RAFT would not likely be as effective as simply prop-
agating the estimates from the previous window.

B. Additional training details

We train with mixed precision in PyTorch (bfloat16).

From point tracking datasets, we use samples which have
anywhere upwards of 256 valid annotated tracks (after aug-
mentations), and trim to a maximum of 6144 tracks to keep
memory usage predictable. From optical flow datasets we
use dense supervision, but note that this data does not include
visibility labels.

The major variables in speed and memory consumption
are batch size, video length, input resolution, and number of
refinement steps. To match inference speed across inputs of
different length and keep memory consumption within our
budget (8x A100 40G), we use the following settings: on
optical flow data (where video length is 2), we use batch size

Table 8. Comparison against CoTracker3 with different evaluation protocols. We evaluate d.ve (higher is better), using an input resolution of
384 x 512. The benchmarks are BADJA [3], CroHD [46], TAPVid-DAVIS [11], DriveTrack [1], EgoPoints [10], Horse10 [33], TAPVid-
Kinetics [11], RGB-Stacking [28], and RoboTAP [52]. “CoTracker3*” indicates values reported in the CoTracker3 paper under a more
expensive evaluation protocol (and on fewer datasets). Parameter counts are in millions.

Method Params.

Training Bad. Cro.

Dav. Dri. Ego. Hor. Kin. Rgb. Rob. Avg.

CoTracker3-Kub [24] 25.39

Kubric 475 489

774 698 58.0 475 70.6 834 772 645

CoTracker3*-Kub [24] 25.39 Kubric - - 76.7 - - - 66.6 819 73.7 -
CoTracker3 [24] 25.39 Kubric+15k 483 445 771 698 604 47.1 71.8 842 81.6 650
CoTracker3* [24] 25.39 Kubric+15k - - 76.3 - - - 68.5 83.6 78.8 -
AllTracker 16.48 Kubric+mix 51.5 440 763 658 625 49.0 723 90.0 834 66.1
GT (sparse) AccFlow RAFT SEA-RAFT PIPs++ LocoTrack CoTracker3 Ours

Figure 6. Visualization of dense correspondence maps produced by all models. On the far left column we show the ground truth
trajectories overlaid on the first frame of the input video, with blue-to-green colormap. (Note that a ground truth flow map does not exist in
this data.) The flow maps in the other columns show the estimated correspondence field from the first frame of a video to the last frame of the
video. Note that RAFT and SEA-RAFT only make use of the first and last frames, while other methods use the intermediate frames as well.

8, resolution 384 x 768, and 4 refinement steps; on videos
of length 24, we use batch size 1, resolution 384 x 512, and
4 refinement steps; on videos of length 56, we use batch size
1, resolution 256 x 384, and 3 refinement steps. In the first
stage of training (on Kubric alone), we use only videos of
length 24 and 56, and split our 8 GPUs by using 4 for the
24-frame videos and 4 for 56-frame videos. In the second
stage of training (on the wider mix of data), we split our
8 GPUs by using 1 for optical flow, 3 for videos of length
24, and 4 for videos of length 56. We sync gradients across
GPUs after each backward pass.

For our BCE loss, we apply the sigmoid first and then use
the direct BCE loss, which we (counter-intuitively) found to
be more numerically stable than BCE with logits.

We note that no architecture modifications are required to
train jointly for optical flow estimation and point tracking. In
optical flow, the temporal attention is a redundant operation,
but we do not disable the temporal transformer, as there are
still MLP layers within it which participate in the processing.

C. Additional baseline details

As mentioned in the main paper, the performance of
CoTracker-style models depends how the query points are
grouped. Intuitively, if multiple queries lie on the same ob-
ject, they will be tracked more accurately. When these meth-
ods are tasked with tracking all of the benchmark queries
at once, they tend to exploit a bias in the data and perform
better than they would perform on random queries. The
authors of these methods suggest a strategy for mitigating
this effect, which consists of running each query in a sep-
arate pass, while also adding “support” points around the
query and a sparse grid covering the image. In our high-
resolution multi-benchmark evaluation, these steps would be
prohibitively expensive (e.g., weeks). We therefore simply
give the models the advantage of the data bias: we give all
queries at once, and supplement them with a sparse grid of
points around the image. We compare this evaluation pro-
tocol to author-reported results in Table 8. We find that our
cheaper protocol over-estimates the accuracy of CoTracker3,
but our own model is still more accurate on average.

Table 9. Optical flow end-point error (“EPE-AII") in the offical
SINTEL test benchmark.

Model Clean Final
SEA-RAFT [54] 1.309 2.601
RAFT [47] 1.609 2.855

GMFlow [57] 1.736 2.902
PWC-Net [42] 4386 5.042
AllTracker 1.673 3.244

Table 10. Optical flow end-point error in the CVO “Final” (T=7)
and “Extended” (T=48) test sets, for visible/occluded pixels.

Model T=7 T=48

AccFlow [55] 1.15/4.63 28.1/529
DOT [27] 0.84/4.05 3.71/7.58
AllTracker 1.03/4.10 3.41/7.93

D. Additional optical flow results

‘We ran AllTracker on the official SINTEL test benchmark,
yielding the scores shown in Table 9, with other official
scores included for comparison. We note that it is com-
mon in optical flow literature to produce a different model
for each benchmark (finetuned with a particular data mix
and resolution), but we simply use our original checkpoint.
AllTracker’s optical flow is not as accurate as SEA-RAFT,
but comparable to RAFT or GMFlow. Qualitatively, All-
Tracker’s flow maps appear to be coarser than the ones from
SEA-RAFT [54], suggesting that the model is underfitting;
better models might be obtained with greater compute.

We additionally evaluate in CVO, the multi-frame optical
flow dataset used by AccFlow and DOT, showing results in
Table 10. We find that on short sequences DOT (combining
CoTracker2 and RAFT) performs best; on long sequences
AllTracker performs best. We also find that AllTracker is 3x
the speed of DOT.

In sum, these results suggest that AllTracker is not state-
of-the-art for optical flow estimation, even though it includes
optical flow data in its training. Attaining top performance
optical flow and point tracking with a single model remains
an open challenge.

E. Additional ablation details

Validation dataset As mentioned in the main paper, we
construct a validation dataset for our ablation studies, us-
ing BADJA [3], CroHD [46], TAPVid-Davis [11], Drive-
Track [1], Horsel0 [33], and RoboTAP [52]. The purpose
of these studies is to obtain a quick (but reliable) look at
performance, and therefore we do not use these datasets in
their entirety, and note we also exclude some of our available
datasets. We subsample from these datasets by (1) selecting
the first frame with any annotations and tracking only the

Accuracy
()] (o)} ()
H w [«))
1 1 1

(o))
w
1

62 1

1 2 3 4 5 6
Iterations

Figure 7. Accuracy over inference steps. Accuracy rises quickly

then plateaus. In the main evaluation we use 4 iterations.

queries on that frame, (2) trimming all videos to a maxi-
mum length of 300 frames. These choices, along with our
truncated training regime (training only 100,000 steps and
only on Kubric) allows for most ablation experiments to
(individually) start and finish within 24 hours.

Inference steps In the main paper we apply the recurrent
refinement module 4 times. Figure 7 shows performance
at different iterations, evaluating J,,, over all datasets and
averaging, using an input resolution of 384 x 512. On the
first step the model achieves 62.1 accuracy, which already
outperforms most state-of-the-art models. Accuracy rises to
its peak at 5 iterations, then begins to drop. In the main paper
we report results at 4 iterations, because we find that step 4
and step 5 produce similar accuracy at higher resolutions.

F. Additional qualitative results

To obtain long-range flow estimates from our point tracker
baselines, we query them to track every pixel of the first
frame of the video. We perform these queries in “batches”
of 10,000, which is the maximum that fits on our GPU.
Note that CoTracker3 benefits from processing these jointly,
whereas PIPs++ and LocoTrack do not, due to the design
of these models. To obtain long-range flow estimates from
the optical flow baselines, we pair the first frame with every
other frame, creating 7' — 1 frame pairs for flow estimation,
where 7' is the length of the video.

We show additional visualizations of multiple models’
dense outputs in Figure 6. We notice striking dissimilarity
across the outputs of the methods, attesting to the difficulty
of the task, and to the usefulness of visualizing point tracks as
flow maps. We find that when the foreground displacements
are large, the flow models often “give up” on the dynamic
foreground and produce a motion field that only describes the
background. We also find that PIPs++ and LocoTrack often
struggle with spatial smoothness, while the flow models
do not. CoTracker3 occasionally fails on smoothness too
(see row 3 with the car), but less so. Our model appears to
produce results that are smooth and accurate, which matches
intuitions for a model that blends the 2D processing of flow
models with the temporal coherence of point trackers.

	Introduction
	Related Work
	AllTracker
	Encoding
	Computing appearance similarity
	Track initialization
	Iterative refinement
	Model training
	Implementation details

	Experiments
	Main results
	Ablations

	Conclusion and Limitations
	Additional model details
	Additional training details
	Additional baseline details
	Additional optical flow results
	Additional ablation details
	Additional qualitative results

