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7. Implementation Details

7.1. Architecture Details

Feature Encoder Hyperparameters We identified no-

table differences in the optimal settings for DINOv2 and

DINO that are not explicitly documented in their original

papers. For DINOv2, we achieve the best performance by

using patch tokens from the final transformer layer, par-

ticularly when working with higher-resolution images. In

contrast, DINO performs better when using patch tokens

from the fourth-to-last transformer layer, with optimal re-

sults at an input resolution of 244; performance degrades

with higher resolutions.

Based on these findings, we use the DINOv2 back-

bone [42] with an input resolution of 518 and patch tokens

from the final transformer layer in our model.

Architecture We learn low-rank matrices (rank 10) for

each attention layer, which are added to the 768 × 768-

dimensional weight matrices of the linear layers before be-

ing passed to the attention mechanism (768×10×2 parame-

ters). For DINOv2-B, this results in v = 768×10×2×12×2
parameters, with a depth of 12 and updating query and value

matrices equating v × 4 bytes (≈ 1.4 MB) of learnable pa-

rameters. This is significantly fewer than the 19 MB of

learnable parameters introduced by Geo [64]. This small

parameter count and simple architecture enable us to in-

crease the inference time of DINOv2-B by less than 1 mil-

lisecond.

7.2. Training Details

Training Hyperparameters The models are trained us-

ing the Adam optimizer with a learning rate of 0.0001, no

weight decay, and no learning rate scheduler, with a batch

size of 6. A key advantage of our approach is the abil-

ity to train directly on raw images without preprocessing,

which allows for increased data augmentation and larger

batch sizes. Training is conducted on a single GPU for 8

epochs. For the loss functions, weights are set as follows:

1 for the positive loss, 1 for the bin loss, and 10 for the

negative loss.

Dataset Shuffeling Training is conducted jointly across

the PFPascal, SPair [38], and APK [64] datasets. We em-

ploy a reweighting scheme that samples up to 800 exam-

ples per category. We found this hyperparameter by trad-

ing off the validation accuracies for the different datasets

(see Sec. 7.4). In fact, if one dataset dominates the training,

the model tends to overfit to that dataset.

Image Pair Augmentation We leverage existing

datasets [22, 38, 55, 64] containing images of diverse

category instances with varying shapes, textures, and

motion deformations, captured under different lighting and

camera setups. Thanks to our method’s low computational

cost, we use more data augmentation than [64] to improve

generalization. We incorporate flipping, cropping, and

color jitter into the augmentation pipeline, generating

more positive, negative, and bin pairs for feature matching

(see Fig. 2). Specifically, flipping creates challenging

positive/negative pairs, while cropping increases bin pairs

by promoting matches to the bin rather than to semantically

similar but geometrically inconsistent features.



R.

Bkg

R.

L.

Bk
g

Bkg
L.

Bk
g

ArgMax
(rows)

ArgMax
(cols)

GT

ArgMax Optimal Transport

Sparse
Information only on Background

GT

OT

Dense
Information on (dis)occlusions

Figure 7. Intuition on OT and geometry. Standard ArgMax loss (left) provides positive supervision only for elements that appear in both

images. Optimal Transport (right) uses the bin to provide explicit signals also on elements that appear in only one of the images. This is

particularly common for non-rigid shapes (e.g., animals), as often a point and its symmetrical counterpart (e.g., left and right eyes) face

(dis)occlusions. Intuitively, this leads to a stronger signal for learning features that better disambiguate symmetries.

Figure 8. Optimal Transport Marginals. This figure illustrates

the marginal distribution used in the Optimal Transport algorithm,

assigning s to the shape and 1 − s to the background. The visi-

ble content proportion is estimated from keypoint annotations by

calculating the ratio of visible to total keypoints. In this example,

the top image has a visibility ratio of 0.2 (only the head is visible),

while the bottom image has a ratio of 0.5 (the head and one side

of the body are visible) relative to the full shape.

7.3. Loss Function

Motivation for OT We argue that Optimal Transport

(OT) provides stronger geometric supervision than Argmax,

as shown in Fig. 7. As already pointed out in Sec. 3 there

are several drawbacks when using Argmax to construct a

loss function. Here, we highlight, that OT incorporates

the supervision signal of points, visible in only one image,

which often occurs with symmetric parts of non-rigid ob-

jects (e.g., eyes) by introducing a dustbin entry in the as-

signment matrix. Furthermore, due to the interaction be-

tween features, the OT loss enables to densely backpropagte

the gradient. For example, a bin assignment signal pushes

down the similarity to all other features, which is not possi-

ble with Argmax.

Designing marginal distributions Since correspondence

data is valuable, a key contribution of our work is using

it to construct marginal distributions see Fig. 8. To define

the marginals for the Optimal Transport (OT) problem, we

depart from the conventional approach, employed in Super-

PFPascal [22] APK [64] Spair [38] CUB [55]

GECO (Ours)-S 89.6 83.4 78.0 90.4

GECO (Ours) 92.1 86.7 85.2 92.5

Table 3. Impact of model size on performance (PCK ↑). Com-

parison of our approach using DINOv2-B and DINOv2-S back-

bones on PFPascall [22], CUB [55], SPair [38], and APK [64]

datasets. The results indicate that model size plays a crucial role

in overall performance.

Glue [48], which assigns 0.9 to the image and 0.1 to the

bin. Instead, we utilize automatically generated mask anno-

tations to distinguish between foreground and background,

leveraging an off-the-shelf segmentation tool [67].

In our formulation, the shape mass is assigned a value of

s = 0.9, with the remaining 1 − s allocated to the back-

ground, as illustrated in Fig. 8. The proportion of visible

content, denoted as x, is estimated by calculating the ratio

of visible keypoints to the total number of keypoints. This

leads to x ·s being assigned to the foreground and (1−x) ·s
to the bin.

This marginal distribution, together with the padded co-

sine similarity matrix of the features, is then fed into the

Optimal Transport algorithm to determine the optimal trans-

port plan.

7.4. Ablation Study on Design Choices

Impact of model size on performance (PCK) When

scaling down the architecture to DINOv2-S, we observe a

decline in performance, which we attribute to the reduced

capacity of the model. While it still captures geometric

relationships between keypoints, its performance does not

match that of the larger variant, as shown in Tab. 3.

Impact of the Optimal Transport Marginals We eval-

uate the impact of the marginal distribution on the perfor-

mance of our method. We compare the standard marginals

used in SuperGlue [48] with our approach, which lever-

ages mask annotations to distinguish between foreground



PFPascal [22] APK [64] Spair [38] CUB [55]

GECO (Ours)-N 91.5 86.0 83.7 89.5

GECO (Ours) 92.1 86.7 85.2 92.5

Table 4. Impact of choice of marginals on performance

(PCK ↑). We evaluate the effect of incorporating more sophis-

ticated marginals (Bottom row) in the loss function compared to

the standard formulation (Top row). Our results show that while

the performance difference on the test splits of APK, PFPascal,

and SPair remains within a margin of 1.5, the performance drop

on the generalization task is substantially larger, reaching a value

of 3. This highlights the importance of incorporating improved

marginals for better generalization.

mean mIoU ↑ mean Acc ↑

GECO (Ours) (w/o KL) 36.4 88.5

GECO (Ours) 37.9 89.0

Table 5. Impact of choice of marginals on performance (Seg-

mentation Accuracy). We evaluate using the segmentation met-

rics explained in Sec. 8.2. We show the effect of incorporating

the KL-marginal regularization (Bottom row) in the loss function

compared to the standard formulation with hard contraints on the

marginal distributions (Top row).

and background. We found that our approach outperforms

the standard marginals especially on the generalization to

the CUB [55] dataset, as shown in Tab. 4.

Impact of the KL Divergence Regularization on the

marginals The benefit of KL regularization is clear in

the segmentation results, as shown in Tab. 5. Because the

estimated marginals are imperfect, KL reduces overfitting

to noise during training and should be increased when ex-

act marginals are available (e.g., images rendered from 3D

shapes).

Impact of dataset shuffeling on the performance We

evaluate the effect of dataset shuffling on performance

across different datasets. As our method is trained jointly

on SPair [38], PFPascal [22], and APK [64], shuffling en-

ables better generalization. To address category imbalance,

we sample up to K image pairs per category; if fewer are

available, all are used.

Performance is highly sensitive to the choice of K. Low

values (e.g., 100-400) lead to overfitting on PFPascal and

poor generalization to SPair and CUB. Conversely, high K

underrepresents PFPascal, limiting its validation accuracy.

We find that K = 800 yields the best overall performance.

8. Additional Experiments

We provide more detailled experiments to analyze the PCK

metric and its subsets in Sec. 8.1. In Sec. 5.2.1, we com-

plement the qualitative analysis of the segmentation perfor-

mance in the main paper with a quantitative and qualita-

tive evaluation of the segmentation confusion matrix. In

Sec. 8.3, we provide an additional experiment focusing on

rigid shapes with diverse appearances and demonstrate our

methods performance on keypoint matching by evaluating

2D-3D projections.

8.1. Analysis with (and of) PCK

Influence of different radii on unambiguous True Pos-

itives A critical choice of PCK is the radius in which a

prediction is considered correct. This also has an impact

on our PGCK subdivision. Here, we investigate how the

choice of the PCK metric’s radius influences the unambigu-

ous true positive subset’s cardinality (see Fig. 9). As ex-

pected, the unambiguous correct predictions decrease with

the radius, while the overall PCK increases (see Fig. 10).

For larger radius values, the PCK metric reflects the model’s

ability to identify general correspondences across the im-

age, even when semantic parts are widely distributed rather

than concentrated in a single area. In contrast, for smaller

radius values, the metric emphasizes the model’s precision

in pinpointing correspondences with high spatial accuracy

and its ability to distinguish between closely spaced key-

points, such as those on the left and right sides, when both

are present.

Results In the main paper, we reported the subsets of the

PGCK for one value of Fig. 9 on APK [64]. Here, we ex-

tend this analysis to the CUB [55] and SPair [38] datasets.

As shown in Fig. 9a, our method achieves a slight improve-

ment over previous work in unambiguous correct predic-

tions on the CUB [55] dataset. For the APK [64] and

SPair [38] datasets, performance varies: our method out-

performs the competitor in one case, while in the other, the

competitor demonstrates a more refined geometric under-

standing. These results suggest that geometric understand-

ing is dataset-dependent.

Additionally, given the performance drop on CUB ob-

served in competing methods on the semantic understand-

ing task (see Fig. 10c), we argue that our approach strikes

a favorable balance between geometric and semantic un-

derstanding. Unlike the competitors, our method preserves

previously learned properties, making it a more robust and

well-rounded solution. Moreover, it remains competitive

with the state of the art while significantly reducing mem-

ory consumption and runtime from 2274 ms to 43 ms.
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Figure 9. Geometric ambiguity as a function of radius. As the radius decreases, the set of unambiguous true positives
n
11

n11

grows, where

the target keypoint is outside the radius of any incorrect matches. This figure illustrates the PGCK subset, specifically the unambiguous

correct predictions, for various radius values (@αimg) on CUB [55], APK [64], and Spair [38]. Our method outperforms previous work

on two out of three datasets while achieving a reduction in runtime and memory usage by two orders of magnitude.

Influence of different radii on PCK As expected the

PCK values are increasing with varying radius. It measures

the general semantic knowledge of features with a part also

measuring the geometric understanding.

Results We present detailed results, evaluated on the PF-

Pascal [22], APK [64], SPair [38], and CUB [55] datasets.

Specifically, in Fig. 10 we show the PCK values for differ-

ent radii across these datasets. Notably, our method signif-

icantly outperforms the current state-of-the-art on three out

of the four datasets, highlighting the superior effectiveness

of our approach. While the competitor Geo [64] achieves

comparable performance to ours in geometric understand-

ing on the generalization task to CUB [55] (see Fig. 9a),

we observe significant catastrophic forgetting in the n10 and

n1x splits leading to worse overall results than DINOv2-S

(see Fig. 10c). In contrast, our method maintains consis-

tent performance across all splits and outperforms Geo [64]

in three out of four cases, demonstrating its robustness and

reliability.

Qualitative results We illustrate various failure modes of

existing approaches and demonstrate how our method ad-

dresses these issues. In Fig. 11, we show that our method

can correctly assign a keypoint to the bin even when the

actual match is occluded. This ability is learned through

bin and negative losses, which encourage the assignment

to the bin rather than to the symmetric counterpart. When

the match is occluded, the model becomes better calibrated,

generating minimal attention on the target image, including

the symmetric counterpart. This represents a failure mode

that the PCK metric does not capture, as the symmetric

counterpart is absent in the target image, and consequently,

this keypoint pair is excluded from the PCK evaluation.

We also report performance on the geometrically rele-

vant case, where multiple semantically similar keypoints are

present in the target image. In this scenario, our method is

more confident in the predictions, focusing only on the rel-

CUB [55]

Bir

11

SPair [38]

Aer Bik Bir Boa Bot Bus Car Cat Cha

34 53 23 30 97 43 40 82 81

Cow Dog Hor Mot Per Pla She Tra TV

80 46 61 69 34 73 72 90 62

APK [38]

alo ant arg bea bis bla bob bro buf

37 31 28 21 20 32 36 33 34

cat che chi cow dee dog ele fox gir

42 30 37 38 36 36 36 33 24

gor ham hip hor jag kin leo lio mar

42 34 40 26 32 33 40 40 27

mon moo mou noi ott pan pan pig pol

37 24 20 38 28 23 46 35 30

rab rac rat rhi she sku sno spi squ

7 28 27 23 34 19 35 35 16

tig uak wea wol zeb

32 39 36 34 24

Table 6. PGCK Dataset imbalance. Completing Fig. 3, we re-

port the geometric aware n11/n, counts only the pairs for which

a geometric mismatch is possible. Categories often present high

imbalance, and geometrical error modes would have a different

weight.

evant areas of the image (see Fig. 12). As shown in Fig. 13,

our features localize keypoints precisely in the target image

without spreading similarity across irrelevant regions.

PGCK Dataset imbalance We analyze the cardinality of

the geometrically aware subset in Fig. 3, which is able to

assess the confusion between keypoints on opposite sides of

the symmetry axis. To complete the table for all categories,

we present a detailed report for the CUB [55], SPair [38],

and APK [64] datasets in Tab. 6.
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Figure 10. PCK as a function of radius. As the radius decreases,

the set of correct matches declines. This figure illustrates the PCK

metric for various radius values (@αimg) on CUB [55], APK [64],

and Spair [38]. Our method outperforms previous work on three

out of four datasets while achieving a reduction in runtime and

memory usage by two orders of magnitude.

Source S Target T Geo [64] GECO (Ours)

Figure 11. Qualitative results on the task of assignment to

the bin (01-case) on APK [64] and CUB [55] (fifth row) . We

show that our method predicts small cosine similarities, if the ac-

tual match is occluded. This is learned by the bin and negative

losses, which encourage the assignment to the bin instead of the

symmetric counterpart. (First five rows) It is clearly visible, that

the model knows the location of the ground truth correspondence,

which could become visible by a small movement. The location of

the symmetric counterpart is ignored. (Last three rows) We receive

only low attention values for the whole image, including the sym-

metric counterpart, when the symmetric counterpart is occluded.



Source S Target T Geo [64] GECO (Ours)

Figure 12. Qualitative results on the task of assignment to the

correct correspondence (11-case) on PFPascal [22] (First five

rows), APK [64] (In the middle) and CUB [55] (Last row). In

the samples above the symmeric counterpart is visible in the target

view. While previous work assigns attention on most of the image,

our model is more confident in the predictions and only attends to

the regions of interest.

Source S Target T Geo [64] GECO (Ours)

Figure 13. Qualitative results on the task of semantic corre-

spondence estimation (10-case) on APK [64] and CUB [55]

(Last row). In the above samples only one semantically similar

keypoint is visible in the target view. While previous work assigns

attention on most of the image, our model is more confident in the

predictions and only attends to the regions of interest.



8.2. Feature Space Segmentation

In Sec. 5.2, we revisit the procedure for evaluating the sep-

arability of the feature space by leveraging annotated parts

and computing centroids for each. To complement the qual-

itative analysis, we now present a quantitative evaluation

using standard segmentation metrics. Furthermore, we in-

clude normalized confusion matrices for another qualitative

analysis to highlight the geometric consistency of the pre-

dicted segmentations.

Dataset We use the PascalParts [6] dataset, which offers

detailed part annotations for a wide variety of object cate-

gories, enabling consistent and comprehensive evaluation

across different classes. However, some of the 20 cate-

gories, such as boat, table, and sofa, have only a single part

annotated. As a result, we exclude these categories from

our evaluation.

Evaluation Similar to prior work [44][68] we use the ac-

curacy and mean Intersection over Union (mIoU) as our

primary evaluation metrics. To compute these metrics, let

sij represent the number of patches from ground-truth part

i that are predicted as part j by the model.

The mean Intersection over Union (mIoU) is defined as

mIoU =
1

N

∑

i

sii
∑

j sij +
∑

j sji − sii
, (12)

where N is the number of parts. The accuracy is defined as:

Acc =

∑

i sii
∑

i

∑

j sij
. (13)

This approach provides a per-category measure, enabling

a detailed comparison of part segmentation performance

across different parts. For an overall evaluation, we com-

pute the average metric across all categories.

In addition, we report metrics specifically for the geo-

metric subdivision, which includes parts divided into left

and right counterparts, such as legs, wings, eyes. The geo-

metric subdivision is presented both quantitatively and qual-

itatively through a confusion matrix. This focused analysis

allows us to assess the model’s ability to distinguish sym-

metric parts, which is critical for understanding its geomet-

ric reasoning capabilities.

Results In Tab. 7, we report the average mIoU and aver-

age accuracy across categories, evaluating performance on

the segmentation task using the PascalParts [6] dataset.

First, evaluating all parts within each category on the left

side of Tab. 7, offers insight into the model’s capacity to dif-

ferentiate between parts that are not necessarily symmetric,

such as head, body, and tail. Although accuracy remains

mean mIoU↑ mean Acc↑ mean mIoU↑

(geo)

mean Acc↑

(geo)

DINO [4] 31.5 87.9 44.1 95.9

DIFTadm [51] 31.5 87.9 48.0 96.4

DINOv2B [42] 39.8 90.1 57.6 97.3

Geo [64] 37.1 88.4 62.8 97.6

GECO (Ours) 37.9 89.0 63.0 97.5

Table 7. Quantitative Evaluation of Segmentation Confusion

Matrices on PascalParts [6]. Our features retain the segmenta-

tion performance of DINOv2 (two left columns), while addition-

ally enabling the distinction between left and right parts (right two

columns). The best scores are shown in bold and the second best

are underlined. Methods with a performance difference of less

than 0.5% are considered to be on par.
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Part Confusion Matrices0 Max

Figure 14. Results on Symmetry. Top: Our method reduces sym-

metric mismatches in part clustering. Bottom: We show the part

confusion matrix (patches aggregated for each part across images),

highlighting geometric confusion (red brackets).

high across methods, mIoU scores decline due to sensitiv-

ity to class imbalance in the parts. Both fine-tuned geom-

etry aware methods (last two rows) perform worse on non

geometric parts, as expected. However, our method outper-

forms Geo [64], indicating better retention of non geometric

information.

On the right side of Tab. 7, we report the metrics for the

geometric parts only. As expected, both geometry-aware

methods outperform all foundation models. The connec-

tion between the qualitative part segmentation results in

Fig. 6 and the confusion matrix analysis is demonstrated

in Fig. 14. Visual inspection aligns with the numbers and

reveals that DINOv2-B struggles with symmetric distinc-

tions (e.g., left vs. right). Additional examples of checker-

board patterns indicative of geometric confusion are shown

in Fig. 15. Here, the matrices contain only geometrically

confusable parts and are normalized to mitigate class im-

balance.
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Figure 15. Qualitative Evaluation of Segmentation Confusion Matrices on PascalParts [6]. We present the confusion matrix for the

segmentation task on the PascalParts [6] dataset, showing every second category in alphabetical order. The matrix displays predicted parts

on vertical and ground truth parts on the horizontal axis, plotting only parts per category with annotated symmetrical counterparts for

visualization purposes. Diagonal entries indicate correct predictions, while off-diagonal entries show misclassifications. To address class

imbalance, the matrix is column-normalized: each column is divided by the total number of patches for that ground truth part. With number

of parts N , each ground truth part annotation is assigned a total mass of 1/N, which is distributed across the predicted parts, such that the

columns sum to 1/N. The colour coding depends on the number of parts N .



8.3. 2D­3D Matching

Structure-from-Motion (SfM), Perspective-n-Point (PnP),

and related methods that rely on rigid geometry are not typ-

ical applications of non-rigid intra-category feature learn-

ing, which remains effective even under substantial intra-

class variations in shape and appearance. Nevertheless,

we demonstrate that our features support downstream tasks

such as inter-instance 2D-3D alignment, which is essential

for pose estimation and geometric reasoning.

Dataset To obtain data that combines intra-class variabil-

ity with rigid structure, we render two 3D animal meshes

from the SMAL model [69]. We enhance their realism and

intra-class diversity using ControlNet (see Fig. 16, Top),

and j filter out hallucinated outputs.

Procedure We decorate all mesh vertices with our fea-

tures by median-aggregating across views, using the

ground-truth camera poses (see Fig. 16, Top). For 20 novel

images, we compute 2D-3D correspondences (see Fig. 16,

Bottom) using argmax matching to the mesh vertex with the

highest feature similarity.

We report the mean geodesic distance between matched

2D keypoints (unprojected onto the mesh) p and ground-

truth vertex pgt:

d̄geo = mean (dgeo(p, pgt)) , (14)

where dgeo denotes the shortest path along the mesh surface

between two vertices. In Fig. 16 (Bottom), black contours

indicate regions of high geodesic error, where the matched

3D vertex is distant from the ground truth.

We further evaluate camera pose estimation based on

these 2D-3D matches. A robust PnP algorithm inside

RANSAC estimates the camera’s rotation and translation

relative to the 3D object. The quality of the estimated rota-

tion R is assessed by comparing it to the ground-truth rota-

tion Rgt using the median rotation error across all images:

ērot = median

(

arccos

(

trace(Rgt⊤R)− 1

2

))

. (15)

Results As shown in Tab. 8, our GECO features outper-

form both Geo [64] and DINOv2-B [42] in terms of rotation

error and geodesic distance. This confirms that our method

enables effective intra-category 2D-3D matching for pose

estimation and geometric reasoning.

Populate Mesh

Test

Depth-

Guided

ControlNet

Median

Vertex

Features

geodesic and rotation error (PnP)

Figure 16. Evaluation Protocol. Top: A mesh from the SMAL

model [69] is rendered to obtain depth images, which guide

ControlNet-based synthesis of realistic 2D images. Hallucinated

outputs are manually filtered. Mesh vertices are then populated

with features by taking the median across the corresponding 2D

views. Bottom: A novel view is processed, and 2D-3D corre-

spondences are established via argmax matching to the mesh ver-

tex with the highest feature similarity. Matches are color-coded

according to surface color. Those exceeding a geodesic distance

threshold dgeo to the ground-truth location are highlighted with a

black contour.

ērot(◦) ↓ d̄geo ↓

DINOv2-B [42] 14.8 0.34

Geo [64] 10.4 0.35

GECO (Ours) 7.0 0.24

Table 8. Quantitative Evaluation of Viewpoint Reconstruc-

tion and 2D-3D Matching. We assess the quality of 2D-3D cor-

respondences using the median rotation error ērot of the recon-

structed view and mean geodesic distance d̄geo between matched

and ground-truth keypoints. Our method outperforms DINOv2-

B [42] and Geo [64] on both metrics, demonstrating superior per-

formance in pose estimation and geometric reasoning. Best scores

are shown in bold.
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Source S Target T DINO [4] DIFTad [51] DINOv2-B [42] Geo [64] GECO (Ours)

Figure 17. Qualitative results on the task of assignment to the bin (01-case) on APK [64] and CUB [55] (Last row).



Source S Target T DIFTad [51] DINO [4] DINOv2-B [42] Geo [64] GECO (Ours)

Figure 18. Qualitative results Qualitative results on the task of assignment to the correct correspondence (11-case) on APK [64],

and CUB [55] (Last row). Note that the keypoint pair in the last row would be excluded in the unambiguous TP subdivision.



Source S Target T DIFTad [51] DINO [4] DINOv2-B [42] Geo [64] GECO (Ours)

Figure 19. Qualitative results Qualitative results on the task of semantic correspondence estimation (10-case) on PFPascal [22]

(First row), APK [64], and CUB [55] (Last row).


