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A. Implementation Details
A.1. Object Detection
Following common practice [7] in LL object detection,
we adopt YOLOV3 [20] as the baseline detector. Since
YOLOV3 operates on Darknet backbone [19], we pre-train
the TorchAdapt following settings explained in Sec. 3.3 and
Fig. 3 in the main paper, where the visual encoder f is
Darknet-53, pre-trained on the ImageNet [8].

To evaluate the performance on the object detection task,
for the (Low-Light) LL setting, COCO [14] pre-trained
weights are utilized to fine-tune YOLOV3 on the ExDark
dataset [16]. Alternatively, we train the model from scratch
in the (Light-Agnostic) LA setting, as COCO images are also
included in the training data, as summarized in Table 1 in the
main paper. Training is conducted using the Stochastic Gra-
dient Descent (SGD) optimizer [21] with an initial learning
rate of 1× 10−3 and batch size of 16 is used. All images are

resized to 608×608 pixels to maintain consistency. We train
YOLOv3 for 24 epochs, reducing the learning rate by a factor
of 10 at epochs 18 and 23. Our implementation is based on
the MMDetection toolbox [1]. To evaluate the performance,
we follow prior approaches [7, 10] and report mAP scores at
mAP@IoU=0.5 and mAP@IoU=0.5:95 using [14].

A.2. Face Detection
For face detection, we choose a different detector and
adopt RetinaNet [15] to report results on the DARK FACE
dataset [25, 29] in the LL setting and a combination of the
DARK FACE and WIDER FACE [28] datasets in the LA
setting, as both datasets only contain a single face class, mak-
ing it challenging face detection benchmark with varying
illuminations. During pre-training of TorchAdapt, ResNet-
50 [13] backbone is utilized as a vision encoder f . For the
face detection task, following prior works [10], we resize
images to a resolution of 1500 × 1000 pixels and follow
the 1× schedule1 in MMDetection [1]. We follow the same
evaluation protocol to report face detection performance as
in § A.1.

A.3. Instance Segmentation
For the instance segmentation task, we adopt RTMDet-Ins-
tiny [17] as our baseline model. Since RTMDet employes
CSPNext [24] as the light-weight backbone network, we
conduct TorchAdapt pre-training with the visual encoder f
set to CSPNext-tiny in Fig. 3.

For the LL setting, we adopt the LIS [2] dataset. For the
LA setting, we take all images containing common classes
between LIS and COCO [14], as explained in Eq. 6 and
Table 1 in the main paper. Following Section A.1, we use the
COCO pre-trained weights of RTMDet-Ins-tiny for the LL
setting and train the model from scratch for the LA setting.
We resize images to 640×640 pixels and train the model for
50 and 300 epochs for LL and LA settings, respectively. The
rest of the experimental settings follow implementation from

1https : / / github . com / open - mmlab / mmdetection /
blob/main/configs/retinanet/retinanet_r50_fpn_
amp-1x_coco.py
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Figure I. Qualitative comparisons on the ExDark validation set. All methods are integrated into YOLOV3 [20] and trained end-to-end
on the ExDark training set [16]. LLIE methods such as Zero-DCE and SCI improve the visual quality but yield inferior predictions.
Nevertheless, our TorchAdapt consistently detects objects more accurately than others, such as ZeroDCE [9], FeatEnhancer [10], SCI [18],
and MAET [7], while closely matching the ground truth (GT). These results highlight TorchAdapt’s ability to enhance object detection in
low-light environments.

Figure II. Qualitative comparisons on Light-Agnostic Object Detection on the ExDark and COCO validation split. All methods are
integrated into YOLOv3 [20] and trained end-to-end. The figure highlights TorchAdapt’s ability to consistently detect objects under both
low-light (ExDark) and well-lit (COCO) conditions, outperforming prior task-specific methods, such as FeatEnhancer, Zero-DCE, and SCI,
while closely aligning with the ground truth (GT).



Figure III. Qualitative comparisons on the DARK FACE validation set. The figure showcases the performance of TorchAdapt (Ours)
compared to other LLIE and task-specific methods, including ZeroDCE, SCI, FeatEnhancer, URetinexNet, and MAET, in detecting faces
under low-light conditions. TorchAdapt consistently identifies faces more accurately and robustly, closely aligning with the ground truth
(GT), demonstrating its effectiveness in challenging low-light scenarios. Best view it on the screen and zoom in.

the MMDetection [1]2. Following the authors of LIS [2], we
employ commonly used mAP and SegAP as the evaluation
metrics to report performance on instance segmentation task.

A.4. Semantic Segmentation
Consistent with prior works [10, 27], we adopt
DeepLabV3+[3] as our baseline model for the se-
mantic segmentation task. We employ ACDC DAtaset [23]
for the LL setting and the combination of ACDC and
CityScapes [6] datasets for the LA settings, as summarized
in Table 1. Following detection tasks, we fine-tune the
pre-trained baseline on the ACDC dataset for low-light
evaluation, whereas we train the model from scratch for LA
settings.

2https : / / github . com / open - mmlab / mmdetection /
blob/main/configs/rtmdet/

For training, we resize the images to 2048×1024. To
enable a direct comparison with the previous state-of-the-
art methods [10, 27], we employ DeepLabV3+ [3] with
ResNet-50 [13] as its backbone. For our TorchAdapt, same
pre-trained weights used in § A.2 are utilized here. The
backbone is pre-initialized with ImageNet [8] weights, and
training is performed with a batch size of 1. The optimizer
is SGD [21], configured with the 20K scheduler3 from MM-
Segmentation [4], a base learning rate of 0.001, and a weight
decay of 0.0005. Similar to prior related efforts [10, 27],
we adopt the commonly used mIoU metrics to evaluate the
semantic segmentation performance.

3https://github.com/open-mmlab/mmsegmentation/
blob/master/configs/_base_/schedules/schedule_20k.
py
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Figure IV. Qualitative comparisons on the light-agnostic face detection on the DARK FACE [29] and WIDER FACE [28]. All methods
are incorporated into RetinaNet [15] and trained end-to-end, following light-agnostic experimental setting in Table 1. The figure highlights
TorchAdapt’s (Ours) superior ability to accurately detect faces in both low-light (DARK FACE) and well-lit (WIDER FACE) conditions,
outperforming other methods such as FeatEnhancer, Zero-DCE, and SCI, while closely matching the ground truth (GT).

.

A.5. Video Object Detection
In addition to image-based tasks, we evaluate the gener-
alization capabilities of TorchAdapt in the video domain.
Following [10], we employ SELSA [26] as a video object
detection baseline framework with a ResNet-50 backbone
pre-trained on ImageNet. Similar to § A.2, we use the Tor-
chAdapt with pre-trained weights optimized with ResNet-50
backbone network. In order to obtain results in Table 2, we
fine-tune the SELSA baseline on the DarkVision dataset [30]
for the LL setting. On the other hand, for the LA setting,
we employ a well-lit, commonly used video object detection
benchmark ImageNet VID [22]. Since DarkVision has five
splits, for convenience of experiments, we choose the 3.2
illumination level split from DarkVision in both LL and LA
settings.

In consistent with [10], we follow the implementation
details adheres to the 1× schedule4 in mmtracking [5]. For
comparison with low-light image enhancement (LLIE) meth-
ods, all video frames are first enhanced using their check-
points before being processed by the baseline network. For
task-specific evaluations, all methods are integrated into the
baseline and trained end-to-end, similar to our TorchAdapt.

4https://github.com/open-mmlab/mmtracking/blob/
master/configs/vid/selsa/selsa_faster_rcnn_r50_
dc5_1x_imagenetvid.py

Adopting common practice in video object detection [10–
12, 26], we utilize mAP@IoU=0.5 to compute all methods.

A.6. Employed Datasets
COCO. The COCO dataset [14] is a large-scale dataset
widely used for object detection and instance segmentation
tasks. For light-agnostic evaluations, COCO is combined
with ExDark [16] for object detection and LIS [2] for in-
stance segmentation. The combined dataset for object detec-
tion includes 12 object classes with 92,357 training samples
and 5,156 validation samples. For the instance segmentation
task, 8 classes are used with 44,321 training samples and
2,550 validation samples.
ExDark. ExDark [16] is a dataset designed specifically for
object detection under low-light conditions. It contains 12
object categories, with 5,891 training images and 1,472 val-
idation images. ExDark is also used in combination with
COCO for light-agnostic evaluations, providing a compre-
hensive benchmark for both low-light and mixed illumina-
tion settings.
DARK FACE. The DARK FACE dataset [29] focuses on
face detection under challenging low-light scenarios. It in-
cludes 5,400 training samples and 600 validation samples.
For light-agnostic evaluations, it is combined with WIDER
FACE [28], forming a dataset with 18,280 training samples

https://github.com/open-mmlab/mmtracking/blob/master/configs/vid/selsa/selsa_faster_rcnn_r50_dc5_1x_imagenetvid.py
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Figure V. Qualitative comparisons on the LIS validation set under low-light setting. TorchAdapt not only produces accurate instance
segmentations but also avoids false positives, such as misclassifications of motorcycles and cars, which are evident in prior state-of-the-art
methods like Zero-DCE and FeatEnhancer.

and 3,822 validation samples.
WIDER FACE. WIDER FACE [28] is a comprehensive face
detection dataset featuring diverse challenges, such as vari-
ations in scale, occlusion, pose, and lighting conditions. It
contains a total of 32,203 images and 393,703 labeled faces,
making it one of the most diverse face detection benchmarks.
For light-agnostic evaluations, WIDER FACE is combined
with DARK FACE [29] to create a balanced benchmark cov-
ering both well-lit and low-light scenarios. This combined
dataset includes 18,280 training samples and 3,822 valida-
tion samples, enabling robust evaluation of face detection
models across varying illumination conditions.
LIS. The LIS dataset [2] is tailored for instance segmentation
in low-light environments. It contains 8 object classes with
1,561 training images and 669 validation images. For light-
agnostic evaluations, LIS is merged with COCO, forming a
dataset with 44,321 training samples and 2,550 validation
samples.
ACDC. The ACDC dataset [23] is designed for semantic
segmentation under adverse weather and lighting conditions,
including night time scenarios. It consists of 19 semantic
classes, with 400 training images and 106 validation im-

ages. For light-agnostic evaluations, ACDC is combined
with CityScapes [6], yielding a dataset with 3,375 training
samples and 606 validation samples.
CityScapes. CityScapes [6] is a widely used semantic seg-
mentation dataset designed to evaluate scene understanding
in urban environments. It includes high-resolution images
with pixel-level annotations covering 19 semantic classes,
such as roads, buildings, vehicles, and pedestrians, cap-
tured under diverse weather and lighting conditions. For
light-agnostic evaluations, CityScapes is combined with
ACDC [23] to ensure comprehensive coverage of both well-
lit and low-light urban scenes.
DarkVision. DarkVision [30] is a recently introduced
dataset for video object detection under low-light conditions.
It includes 4 classes with 26 video samples for training and 6
video samples for validation in low-light settings, covering 5
different illumination levels. For light-agnostic evaluations,
it is merged with ImageNet VID [22], resulting in a dataset
with 401 training video samples and 51 validation video
samples.
ImageNet VID. ImageNet VID [22] is a large-scale bench-
mark dataset specifically designed for video object detection.



Figure VI. Qualitative analysis of night time semantic segmentation task on the ACDC validation set. The figure highlights TorchAdapt’s
(Ours) ability to generate accurate segmentations under low-light conditions. In contrast, prior methods such as FeatEnhancer, Xue et al., and
Zero-DCE exhibit noticeable segmentation errors, particularly in critical regions like road boundaries, Poles, and Fences. While TorchAdapt
demonstrates impressive performance, certain discrepancies remain in challenging areas, such as fine-grained structures visible in the GT
masks, indicating room for further improvement.

It includes 30 object categories and provides a total of 3862
training and 555 validation videos captured under diverse
real-world conditions, including varying object motions, oc-
clusions, and viewpoints. This dataset serves as a critical
benchmark for evaluating the temporal and spatial reasoning
capabilities of detection models. For light-agnostic evalua-
tions, ImageNet VID is combined with DarkVision [30], a
low-light video object detection dataset. This combination
ensures a comprehensive benchmark to test the robustness
and generalization of models across both well-lit and low-
light video sequences, covering diverse lighting conditions
and challenging scenarios.

B. Results and Discussion

B.1. Object Detection

We provide the quantitative analysis for the object detection
task under both Low-light (LL) and Light-Agnostic (LA)
settings in Table 2 in the main paper. Here, we provide
qualitative analysis with LL settings in Fig. I and with LA
settings in Fig. II. Experimental settings explained in § A.1
are adopted to reproduce these figures.

B.2. Face Detection
We provide the quantitative analysis for the face detection
task under both LL and LA settings in Table 2 in the main
paper. Here, we provide qualitative analysis with LL settings
in Fig. III and with LA settings in Fig. IV. Experimental
settings explained in § A.2 are adopted to reproduce these
figures.

B.3. Instance Segmentation
We provide qualitative analysis of Instance segmentation,
visualizing predictions from the top 5 performing methods in
Fig. V. Experimental settings explained in § A.3 are adopted
to reproduce this figure.

B.4. Semantic Segmentation
We provide qualitative analysis of Semantic segmentation,
visualizing predictions from the top 4 performing methods
in Fig. VI. Experimental settings explained in § A.4 are
adopted to reproduce this figure.

B.5. Enhancement As Emergence
In Sec. 5 of the main paper, we explore the enhancement as
an emergent property of our TorchAdapt. Here, we visualize
more examples in Fig. VII. For each input image I , we



illustrate the learned modulated enhancement from the Adapt
module and the final enhanced image from the complete
TorchAdapt module.

C. Additional Experiments and Ablations
C.1. Performance Comparison on Well-lit Datasets
Table I evaluates the performance of TorchAdapt on well-
lit datasets, comparing it with prior SOTA low-light im-
age enhancement and task-specific methods. The experi-
ments are conducted on COCO [14] for object detection
and CityScapes [6] for semantic segmentation. TorchAdapt
achieves an mAP of 34.7 and mAP50 of 57.6 in object de-
tection, improving by +0.9 and +0.8, respectively, over the
baseline. For semantic segmentation, TorchAdapt attains
an mIoU of 80.0, surpassing the baseline by +0.4. These
results highlight TorchAdapt’s ability to preserve or even
enhance performance in well-lit conditions, leveraging its
illumination-invariant learning. Notably, TorchAdapt out-
performs prior methods such as Zero-DCE, SCI, and Feat-
EnHancer, demonstrating its effectiveness and adaptability
across diverse illumination settings.

C.2. LLIE methods as a Torch in TorchAdapt
Table II demonstrates the improved performance of LLIE
methods, Zero-DCE [9] and SCI [18], when integrated as
the Torch module in the TorchAdapt framework. For Zero-
DCE, incorporating it as a Torch results in significant gains,
achieving mAP improvements of +0.1 in LL and +0.3 in
LA for object detection, and SegAP improvements of +0.2
in LL and +0.4 in LA for instance segmentation. Similarly,
SCI as Torch improves mAP by +0.1 in both LL and LA
for object detection, and SegAP by +1.1 in LL and +0.7
in LA for instance segmentation. These results highlight
the ability of TorchAdapt to make existing LLIE methods
more effective and light-agnostic by leveraging its modular
framework, significantly enhancing their performance across
diverse illumination conditions.

C.3. Can TorchAdapt work without Light-Agnostic
Training?

Table III highlights the impact of light-agnostic training on
TorchAdapt for object detection and instance segmentation
under low-light (LL) and light-agnostic (LA) settings. It
consistently improves performance, achieving mAP gains
of +0.2 in LL and +1.1 in LA for object detection, as well
as SegAP gains of +0.7 in LL and +0.8 in LA for instance
segmentation. These results demonstrate that light-agnostic
training enhances TorchAdapt’s ability to learn illumination-
invariant features, leading to improved task performance
across both settings. Notably, even without light-agnostic
training, TorchAdapt delivers competitive results compared
to prior LLIE and task-specific methods.



Figure VII. Illustrating low-light image Enhancement as an emergent property of TorchAdapt on the DARK FACE validation set.
This figure is an extension of Fig. 6 in the main paper. Left side of the figure is the input image, the middle part is the adaptive enhancement
learned by the Adapt module, and the rightmost is the enhanced image from the TorchAdapt. Although TorchAdapt is designed to produce
illumination-invariant features for high-level vision tasks without employing any explicit enhancement loss functions during training, it
inherently enhances low-light images, specifically the region of interest. For instance, human faces in the DARK FACE dataset.



Method Object Det. Semantic Seg.

mAP mAP50 mIoU
Baseline 33.8 56.8 79.6
Zero-DCE [9] 33.1 55.9 79.2
SCI [18] 32.2 49.8 77.0
FeatEnHancer [10] 33.6 56.5 79.5
TorchAdapt 34.7+0.9 57.6+0.8 80.0+0.4

Table I. Comparison of TorchAdapt with prior SOTA low-light image enhancement and task-specific methods on well-lit datasets,
including COCO [14] for Object Detection and CityScapes [6] for Semantic Segmentation. All methods are trained end-to-end using
the same baselines for direct comparison. Leveraging illumination-invariant learning, TorchAdapt not only preserves baseline performance
but also achieves improvements on already well-lit datasets, demonstrating its adaptability and effectiveness.

Method Object Det. Instance Seg.

LL LA LL LA
Zero-DCE [9] 76.2 57.6 43.5 32.1
Zero-DCE ‡ 79.1 62.9 52.7 35.7

As Torch 79.2 63.2 52.9 36.1
SCI [18] 75.5 57.9 43.5 32.1

SCI ‡ 79.2 63.0 51.0 34.9
As Torch 79.3 63.3 52.1 35.6

Table II. Making LLIE methods (Zero-DCE [9] and SCI [18]) better and light-agnostic, by plugging them as a Torch in our
TorchAdapt framework. These results affirm the model-agnostic generality of the TorchAdapt framework.

Light-Agnostic Training Object Det. Instance Seg.

LL LA LL LA
× 79.9 62.9 52.9 35.8
✓ 80.1 64.0 53.6 36.6

Table III. Ablating Light-Agnostic training in the TorchAdapt and its impact on object detection and instance segmentation tasks in
both low-light and light-agnostic settings. Light-agnostic training brings stronger gains, specifically in the LA setting. However, it is
worth mentioning that even without light-agnostic training, TorchAdapt produces reasonable gains when compared with prior LLIE and
task-related methods.
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