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A. Different Versions of Diff. Detector
Tab. 1 presents performance comparison between our
method and GDD across different versions of Stable Dif-
fusion models (SD-3-M means Stable-Diffusion-3-Medium
with official weights). Our method achieves both superior
accuracy and significantly improved efficiency, reducing in-
ference time by approximately 75% (from 679ms, 698ms,
and 976ms to 164ms, 167ms, and 244ms on SD-1.5, SD-
2.1, and SD-3-M respectively) while consistently outper-
forming GDD across all datasets with improvements of up
to 8.0% percentage points.

We observe that SD-3-M performs notably worse than
SD-1.5 and SD-2.1 on both Real to Artistic and Diverse
Weather datasets, with performance gaps of nearly 29.6%
and 27.8% mAP on Clipart and Comic datasets. Despite
these baseline differences, our method still achieves sig-
nificant improvements over GDD [15] on SD-3-M, with
gains of 12.8% and 13.3% percentage points on Clipart and
Comic datasets.

The inferior performance of SD-3-M can be attributed
to several factors: First, the UNet [32] denoising structure
in SD-1.5 and SD-2.1 outputs multi-level features, which
is advantageous for dense prediction tasks, whereas SD-3-
M uses MMDiT [12] as its denoising structure, which only
outputs single-scale intermediate features, lacking multi-
scale feature representation capabilities and making it diffi-
cult to capture fine-grained semantic information in images.
Additionally, the transformer structure in SD-3-M, while
excellent for generation tasks, has inherent limitations for
detection tasks that require precise spatial correspondence.
Its global attention mechanism may neglect local spatial
structure information, resulting in weakened feature align-
ment capability during cross-domain transfer. This also ex-
plains why the performance decline is more pronounced on
datasets with larger style differences (such as Clipart and
Comic).

However, we believe that SD-3-M with its DiT struc-
ture still holds significant exploratory value for domain gen-
eralization and adaptation tasks. Future work could ex-
plore multi-scale feature utilization, attention mechanism
improvements, and domain generalization strategies specif-
ically designed for transformer architectures, offering new
possibilities for applying diffusion models to dense predic-
tion tasks.

Table 1. Performance comparison between GDD and our model
across different Stable Diffusion versions.

Version Models BDD. Foggy. Cli. Com. Wat.

SD-1.5
GDD [15] 46.6 50.1 58.3 51.9 68.4

Ours 49.3 50.7 64.1 55.2 69.7
+Gain +2.7 +0.6 +5.8 +3.3 +1.3

SD-2.1
GDD [15] 45.8 48.3 51.7 46.6 62.1

Ours 48.0 50.3 59.7 54.5 68.6
+Gain +2.2 +2.0 +8.0 +7.9 +6.5

SD-3-M
GDD [15] 40.4 46.1 28.7 24.1 45.0

Ours 41.9 50.8 41.5 37.4 54.6
+Gain +1.5 +4.7 +12.8 +13.3 +9.6

Version Models DF DR NR NS Inf. (ms)

SD-1.5
GDD [15] 43.3 42.5 27.8 47.0 679

Ours 48.5 48.4 31.3 51.6 164
+Gain +5.2 +5.9 +3.5 +4.6

SD-2.1
GDD [15] 44.6 41.6 23.2 46.4 698

Ours 48.7 47.3 29.8 51.8 167
+Gain +4.1 +5.7 +6.6 +5.4

SD-3-M
GDD [15] 36.0 30.5 15.9 32.8 976

Ours 38.3 32.0 15.9 35.8 244
+Gain +2.3 +1.5 +0.0 +3.0



B. Class-wise Results and Comparisons
B.1. Analysis of Real to Artistic Results
Tab. 2, 3, and 4 present detailed class-wise results on three
Real to Artistic datasets. Our methods consistently outper-
forms existing methods across all three datasets. In DG set-
ting, our diff. detector achieves 64.1%, 55.2%, and 69.7%
mAP on Clipart, Comic, and Watercolor respectively, sur-
passing the previous SOTA results GDD [15] by 5.8%,
3.3%, and 1.3%. Similar improvements are observed in the
DA setting, where our approach reaches 58.2%, 50.5%, and
67.5% mAP.

B.2. Analysis of Diverse Weather Results
Tab. 5, 6, 7, and 8 present detailed class-wise results on
four Diverse Weather Datasets. In DG setting, our diff.
detector achieves 48.5%, 48.4%, 31.3%, and 51.6% mAP
on Daytime-Foggy, Dusk-Rainy, Night-Rainy, and Night-
Sunny respectively, surpassing the previous best methods
GDD [15] by 5.2%, 5.9%, 3.5%, and 4.6%. The im-
provements are particularly significant in challenging low-
light and adverse weather conditions such as Night-Rainy,
where our method substantially outperforms traditional ap-
proaches. These results demonstrate the robustness of our
diffusion-based features in capturing consistent object rep-
resentations across diverse weather and lighting conditions.

Table 2. Real to Artistic DG and DA Results (%) on Comic.

Methods Bike Bird Car Cat Dog Person mAP

DG methods (without target data)
Div. [9] (CVPR’24) 41.7 12.3 29.0 13.2 20.6 36.5 25.5
DivAlign [9] (CVPR’24) 54.1 16.9 30.1 25.0 27.4 45.9 33.2
DDT (SD-1.5) [14] (MM’24) / / / / / / 44.4
GDD (SD-1.5) [15] (CVPR’25) 63.3 41.7 58.2 31.8 40.9 75.3 51.9
GDD (R101) [15] (CVPR’25) 47.6 21.0 35.3 9.1 21.6 43.5 29.7

Ours (Diff. Detector, SD-1.5) 64.8 50.7 57.7 33.0 50.1 75.0 55.2
Ours (Diff. Guided, R101) 48.7 16.9 39.0 8.9 20.1 46.6 30.0

DA methods (with unlabeled target data)
DA-Faster [6] (CVPR’18) 31.1 10.3 15.5 12.4 19.3 39.0 21.2
SWDA [33] (CVPR’19) 36.4 21.8 29.8 15.1 23.5 49.6 29.4
STABR [20] (ICCV’19) 50.6 13.6 31.0 7.5 16.4 41.4 26.8
MCRA [42] (ECCV’20) 47.9 20.5 37.4 20.6 24.5 50.2 33.5
I3Net [5] (CVPR’21) 47.5 19.9 33.2 11.4 19.4 49.1 30.1
DBGL [4] (ICCV’21) 35.6 20.3 33.9 16.4 26.6 45.3 29.7
D-ADAPT [18] (ICLR’22) 52.4 25.4 42.3 43.7 25.7 53.5 40.5
DDT (R101) [14] (MM’24) 63.2 34.8 56.6 31.7 39.0 75.9 50.2

Ours (Diff. Guided, R101) 60.1 37.5 52.1 30.2 48.7 74.3 50.5

Table 3. Real to Artistic DG and DA Results (%) on Watercolor.

Methods Bike Bird Car Cat Dog Person mAP

DG methods (without target data)
Div. [9] (CVPR’24) 87.1 51.7 53.6 35.1 23.6 63.6 52.5
DivAlign [9] (CVPR’24) 90.4 51.8 51.9 43.9 35.9 70.2 57.4
DDT (SD-1.5) [14] (MM’24) / / / / / / 58.7
GDD (SD-1.5) [15] (CVPR’25) 99.8 70.3 57.5 49.8 51.0 82.0 68.4
GDD (R101) [15] (CVPR’25) 90.1 51.0 48.5 40.2 28.9 66.7 54.2

Ours (Diff. Detector, SD-1.5) 88.0 74.9 59.0 60.5 57.2 78.5 69.7
Ours (Diff. Guided, R101) 83.9 53.0 54.0 42.5 36.3 69.6 56.6

DA methods (with unlabeled target data)
SWDA [33] (CVPR’19) 82.3 55.9 46.5 32.7 35.5 66.7 53.3
MCRA [42] (ECCV’20) 87.9 52.1 51.8 41.6 33.8 68.8 56.0
UMT [10] (CVPR’21) 88.2 55.3 51.7 39.8 43.6 69.9 58.1
IIOD [36] (TPAMI’21) 95.8 54.3 48.3 42.4 35.1 65.8 56.9
I3Net [5] (CVPR’21) 81.1 49.3 46.2 35.0 31.9 65.7 51.5
SADA [7] (IJCV’21) 82.9 54.6 52.3 40.5 37.7 68.2 56.0
CDG [24] (CVPR’19) 97.7 53.1 52.1 47.3 38.7 68.9 59.7
VDD [37] (ICCV’21) 90.0 56.6 49.2 39.5 38.8 65.3 56.6
DBGL [4] (ICCV’21) 83.1 49.3 50.6 39.8 38.7 61.3 53.8
AT [26] (CVPR’22) 93.6 56.1 58.9 37.3 39.6 73.8 59.9
LODS [25] (CVPR’22) 95.2 53.1 46.9 37.2 47.6 69.3 58.2
DAVimNet [11] (ArXiv’24) 87.2 53.6 51.9 34.9 30.3 70.1 54.8
UMGA [40] (TPAMI’24) 67.1 53.4 43.9 46.3 50.5 79.8 56.8
DDT (R101) [14] (MM’24) 87.1 64.0 55.7 50.6 48.8 75.7 63.7

Ours (Diff. Guided, R101) 93.8 68.2 57.7 52.0 53.5 79.7 67.5



Table 4. Real to Artistic DG and DA Results (%) on Clipart.

Methods aero. bike bird boat bottle bus car cat chair cow table dog horse bike psn. plant. sheep sofa train tv mAP

DG methods (without target data)

Div. [9] (CVPR’24) 29.3 50.9 23.4 35.3 45.3 49.8 33.4 10.6 43.3 22.3 31.6 4.5 32.9 51.9 40.2 51.1 18.2 29.6 42.3 28.5 33.7
DivAlign [9] (CVPR’24) 34.4 64.4 22.7 27.0 45.6 59.2 32.9 7.0 46.8 55.8 28.9 14.5 44.4 58.0 55.2 52.1 14.8 38.4 42.5 33.9 38.9
DDT (SD-1.5) [14] (MM’24) / / / / / / / / / / / / / / / / / / / / 47.4
GDD (SD-1.5) [15] (CVPR’25) 63.7 86.1 49.8 56.5 52.9 50.9 67.3 19.7 74.7 34.3 57.7 41.9 63.2 89.4 89.6 59.2 23.5 64.9 65.9 55.2 58.3
GDD (R101) [15] (CVPR’25) 19.3 57.8 28.4 37.4 57.8 81.3 46.3 3.8 57.8 27.2 28.3 19.6 42.5 50.9 57.8 59.8 15.6 36.0 37.7 50.5 40.8

Ours (Diff. Detector, SD-1.5) 75.7 72.7 59.1 66.2 63.5 62.9 76.5 19.8 78.5 46.9 59.1 42.7 66.9 93.7 91.2 63.4 41.0 70.4 68.3 62.5 64.1
Ours (Diff. Guided, R101) 31.1 56.2 26.4 33.9 55.9 72.4 42.4 10.2 56.5 11.6 29.0 12.2 36.3 65.4 59.5 57.9 17.9 34.0 39.1 51.6 40.5

DA methods (with unlabeled target data)

SWDA [33] (CVPR’19) 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.5 33.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1
HTCN [3] (CVPR’20) 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 21.1 20.1 39.1 72.8 63.0 43.1 19.3 30.1 50.2 51.8 40.3
SAPNet [22] (ECCV’20) 27.4 70.8 32.0 27.9 42.4 63.5 47.5 14.3 48.2 46.1 31.8 17.9 43.8 68.0 68.1 49.0 18.7 20.4 55.8 51.3 42.2
UMT [10] (CVPR’21) 39.6 59.1 32.4 35.0 45.1 61.9 48.4 7.5 46.0 67.6 21.4 29.5 48.2 75.9 70.5 56.7 25.9 28.9 39.4 43.6 44.1
IIOD [36] (TPAMI’21) 41.5 52.7 34.5 28.1 43.7 58.5 41.8 15.3 40.1 54.4 26.7 28.5 37.7 75.4 63.7 48.7 16.5 30.8 54.5 48.7 42.1
SADA [7] (IJCV’21) 29.4 56.8 30.6 34.0 49.5 50.5 47.7 18.7 48.5 64.4 20.3 29.0 42.3 84.1 73.4 37.4 20.5 39.8 41.2 48.0 43.3
UaDAN [13] (TMM’21) 35.0 72.7 41.0 24.4 21.3 69.8 53.5 2.3 34.2 61.2 31.0 29.5 47.9 63.6 62.2 61.3 13.9 7.6 48.6 23.9 40.2
DBGL [4] (ICCV’21) 28.5 52.3 34.3 32.8 38.6 66.4 38.2 25.3 39.9 47.4 23.9 17.9 38.9 78.3 61.2 51.7 26.2 28.9 56.8 44.5 41.6
AT [26] (CVPR’22) 33.8 60.9 38.6 49.4 52.4 53.9 56.7 7.5 52.8 63.5 34.0 25.0 62.2 72.1 77.2 57.7 27.2 52.0 55.7 54.1 49.3
D-ADAPT [18] (ICLR’22) 56.4 63.2 42.3 40.9 45.3 77.0 48.7 25.4 44.3 58.4 31.4 24.5 47.1 75.3 69.3 43.5 27.9 34.1 60.7 64.0 49.0
TIA [41] (CVPR’22) 42.2 66.0 36.9 37.3 43.7 71.8 49.7 18.2 44.9 58.9 18.2 29.1 40.7 87.8 67.4 49.7 27.4 27.8 57.1 50.6 46.3
LODS [25] (CVPR’22) 43.1 61.4 40.1 36.8 48.2 45.8 48.3 20.4 44.8 53.3 32.5 26.1 40.6 86.3 68.5 48.9 25.4 33.2 44.0 56.5 45.2
CIGAR [27] (CVPR’23) 35.2 55.0 39.2 30.7 60.1 58.1 46.9 31.8 47.0 61.0 21.8 26.7 44.6 52.4 68.5 54.4 31.3 38.8 56.5 63.5 46.2
CMT [2] (CVPR’23) 39.8 56.3 38.7 39.7 60.4 35.0 56.0 7.1 60.1 60.4 35.8 28.1 67.8 84.5 80.1 55.5 20.3 32.8 42.3 38.2 47.0
DAVimNet [11] (ArXiv’24) 33.2 75.5 33.1 25.5 27.9 69.9 50.1 16.9 40.8 47.0 32.6 24.1 32.5 77.0 69.5 37.6 23.3 41.2 57.0 48.2 43.8
UMGA [40] (TPAMI’24) 38.7 77.2 39.0 35.4 53.8 78.1 47.5 17.5 38.2 49.9 20.0 18.0 44.2 83.5 74.6 57.7 26.7 26.0 55.4 58.3 47.0
CAT [19] (CVPR’24) 40.5 64.1 38.8 41.0 60.7 55.5 55.6 14.3 54.7 59.6 46.2 20.3 58.7 92.9 62.6 57.5 22.4 40.9 49.5 46.0 49.1
DDT (R101) [14] (MM’24) 60.9 65.7 40.9 52.7 55.2 82.8 63.3 14.0 59.2 56.2 39.7 39.6 52.7 97.7 83.1 60.1 29.0 44.7 53.1 61.8 55.6

Ours (Diff. Guided, R101) 54.2 53.5 52.0 57.4 62.5 80.6 65.5 22.0 64.1 60.3 44.3 36.5 60.6 92.5 85.2 63.2 42.9 44.0 59.8 61.9 58.2



Table 5. Generalization detection Results (%) on Daytime-Foggy.

Methods Bus Bike Car Motor Person Rider Truck mAP

IBN-Net [29] (CVPR’18) 29.9 26.1 44.5 24.4 26.2 33.5 22.4 29.6
SW [30] (ICCV’19) 30.6 26.2 44.6 25.1 30.7 34.6 23.6 30.8
IterNorm [17] (CVPR’19) 29.7 21.8 42.4 24.4 26.0 33.3 21.6 28.5
ISW [8] (CVPR’21) 29.5 26.4 49.2 27.9 30.7 34.8 24.0 31.8
CDSD [35] (CVPR’22) 32.9 28.0 48.8 29.8 32.5 38.2 24.1 33.5
CLIPGap [34] (CVPR’23) 36.1 34.3 58.0 33.1 39.0 43.9 25.1 38.5
SRCD [31] (TNNLS’24) 36.4 30.1 52.4 31.3 33.4 40.1 27.7 35.9
G-NAS [38] (AAAI’24) 32.4 31.2 57.7 31.9 38.6 38.5 24.5 36.4
OA-DG [21] (AAAI’24) - - - - - - - 38.3
DivAlign [9] (CVPR’24) - - - - - - - 37.2
UFR [28] (CVPR’24) 36.9 35.8 61.7 33.7 39.5 42.2 27.5 39.6
Prompt-D [23] (CVPR’24) 36.1 34.5 58.4 33.3 40.5 44.2 26.2 39.1
DIDM [16] (ArXiv’25) 38.5 31.6 62.1 35.8 36.8 42.7 27.3 39.3
PhysAug [39] (ArXiv’24) - - - - - - - 40.8
GDD (SD-1.5) [15] (CVPR’25) 37.5 32.4 67.9 35.6 48.3 44.6 37.1 43.3
GDD (R101) [15] (CVPR’25) 39.3 35.8 69.4 37.7 48.8 49.7 32.3 44.7

Ours (Diff. Detector, SD-1.5) 39.6 41.7 72.8 43.9 53.7 53.3 34.8 48.5
Ours (Diff. Guided, R101) 37.6 41.1 70.8 41.0 50.7 51.4 34.6 46.7

Table 6. Generalization detection Results (%) on Dusk-Rainy.

Methods Bus Bike Car Motor Person Rider Truck mAP

IBN-Net [29] (CVPR’18) 37.0 14.8 50.3 11.4 17.3 13.3 38.4 26.1
SW [30] (ICCV’19) 35.2 16.7 50.1 10.4 20.1 13.0 38.8 26.3
IterNorm [17] (CVPR’19) 32.9 14.1 38.9 11.0 15.5 11.6 35.7 22.8
ISW [8] (CVPR’21) 34.7 16.0 50.0 11.1 17.8 12.6 38.8 25.9
CDSD [35] (CVPR’22) 37.1 19.6 50.9 13.4 19.7 16.3 40.7 28.2
CLIPGap [34] (CVPR’23) 37.8 22.8 60.7 16.8 26.8 18.7 42.4 32.3
SRCD [31] (TNNLS’24) 39.5 21.4 50.6 11.9 20.1 17.6 40.5 28.8
G-NAS [38] (AAAI’24) 44.6 22.3 66.4 14.7 32.1 19.6 45.8 35.1
OA-DG [21] (AAAI’24) - - - - - - - 33.9
DivAlign [9] (CVPR’24) - - - - - - - 38.1
UFR [28] (CVPR’24) 37.1 21.8 67.9 16.4 27.4 17.9 43.9 33.2
Prompt-D [23] (CVPR’24) 39.4 25.2 60.9 20.4 29.9 16.5 43.9 33.7
DIDM [16] (ArXiv’25) 41.6 26.3 66.6 16.6 30.9 21.9 44.1 35.4
PhysAug [39] (ArXiv’24) - - - - - - - 41.2
GDD (SD-1.5) [15] (CVPR’25) 49.7 27.9 74.9 18.2 45.5 24.5 56.8 42.5
GDD (R101) [15] (CVPR’25) 43.1 23.9 73.6 13.4 33.2 22.1 52.3 37.4

Ours (Diff. Detector, SD-1.5) 54.8 36.1 77.6 27.6 49.3 32.4 61.1 48.4
Ours (Diff. Guided, R101) 46.7 25.5 74.9 16.4 37.0 21.4 51.9 39.1

Table 7. Generalization detection Results (%) on Night-Rainy.

Methods Bus Bike Car Motor Person Rider Truck mAP

IBN-Net [29] (CVPR’18) 24.6 10.0 28.4 0.9 8.3 9.8 18.1 14.3
SW [30] (ICCV’19) 22.3 7.8 27.6 0.2 10.3 10.0 17.7 13.7
IterNorm [17] (CVPR’19) 21.4 6.7 22.0 0.9 9.1 10.6 17.6 12.6
ISW [8] (CVPR’21) 22.5 11.4 26.9 0.4 9.9 9.8 17.5 14.1
CDSD [35] (CVPR’22) 24.4 11.6 29.5 0.4 10.5 11.4 19.2 15.3
CLIPGap [34] (CVPR’23) 28.6 12.1 36.1 9.2 12.3 9.6 22.9 18.7
SRCD [31] (TNNLS’24) 26.5 12.9 32.4 0.8 10.2 12.5 24.0 17.0
G-NAS [38] (AAAI’24) 28.6 9.8 38.4 0.1 13.8 9.8 21.4 17.4
OA-DG [21] (AAAI’24) - - - - - - - 16.8
DivAlign [9] (CVPR’24) - - - - - - - 24.1
UFR [28] (CVPR’24) 29.9 11.8 36.1 9.4 13.1 10.5 23.3 19.2
Prompt-D [23] (CVPR’24) 25.6 12.1 35.8 10.1 14.2 12.9 22.9 19.2
DIDM [16] (ArXiv’25) 31.6 12.1 38.3 3.8 12.8 10.6 25.0 19.2
PhysAug [39] (ArXiv’24) - - - - - - - 23.1
GDD (SD-1.5) [15] (CVPR’25) 42.0 15.0 53.6 6.5 26.2 13.8 37.5 27.8
GDD (R101) [15] (CVPR’25) 35.4 12.7 46.2 3.2 13.8 10.7 29.7 21.7

Ours (Diff. Detector, SD-1.5) 42.6 21.3 57.3 7.2 29.7 17.7 43.5 31.3
Ours (Diff. Guided, R101) 31.6 11.2 47.9 7.0 16.2 12.9 29.8 22.4

Table 8. Generalization detection Results (%) on Night-Sunny.

Methods Bus Bike Car Motor Person Rider Truck mAP

IBN-Net [29] (CVPR’18) 37.8 27.3 49.6 15.1 29.2 27.1 38.9 32.1
SW [30] (ICCV’19) 38.7 29.2 49.8 16.6 31.5 28.0 40.2 33.4
IterNorm [17] (CVPR’19) 38.5 23.5 38.9 15.8 26.6 25.9 38.1 29.6
ISW [8] (CVPR’21) 38.5 28.5 49.6 15.4 31.9 27.5 41.3 33.2
CDSD [35] (CVPR’22) 40.6 35.1 50.7 19.7 34.7 32.1 43.4 36.6
CLIPGap [34] (CVPR’23) 37.7 34.3 58.0 19.2 37.6 28.5 42.9 36.9
SRCD [31] (TNNLS’24) 43.1 32.5 52.3 20.1 34.8 31.5 42.9 36.7
G-NAS [38] (AAAI’24) 46.9 40.5 67.5 26.5 50.7 35.4 47.8 45.0
OA-DG [21] (AAAI’24) - - - - - - - 38.0
DivAlign [9] (CVPR’24) - - - - - - - 42.5
UFR [28] (CVPR’24) 43.6 38.1 66.1 14.7 49.1 26.4 47.5 40.8
Prompt-D [23] (CVPR’24) 40.9 35.0 59.0 21.3 40.4 29.9 42.9 38.5
DIDM [16] (ArXiv’25) 43.5 40.1 65.1 22.4 45.2 32.5 45.3 42.0
PhysAug [39] (ArXiv’24) - - - - - - - 44.9
GDD (SD-1.5) [15] (CVPR’25) 49.6 42.1 70.5 21.4 54.5 38.2 52.6 47.0
GDD (R101) [15] (CVPR’25) 51.0 42.8 72.2 27.5 55.9 39.5 52.0 48.6

Ours (Diff. Detector, SD-1.5) 53.1 47.5 72.7 29.4 58.3 44.4 55.4 51.6
Ours (Diff. Guided, R101) 51.7 45.6 73.1 29.3 57.8 42.3 54.0 50.5



C. Error Analysis
C.1. Error Analysis with TIDE
TIDE [1] provides a comprehensive framework for analyz-
ing object detection errors. The main error categories in-
clude Cls (classification errors with correct location), Loc
(localization errors with correct class), Both (combined
class and location errors), Dupe (duplicate detections), Bkg
(false background detections), Miss (missed objects), FP
(false positives not matching any ground truth), and FN
(ground truth objects not detected).

The TIDE analysis results in Tab. 9 reveals that the most
significant factor limiting standard Faster R-CNN perfor-
mance across DG benchmarks is missed detections (Miss
and FN). This is evident from the consistently high values
in these categories, highlighted in red in the table. Our pro-
posed diff. detector significantly reduces these missed de-
tection errors across all test domains, leading to substantial
mAP improvements.

Similarly, when ordinary detectors are guided by the diff.
detectors (in both DG and DA settings), they also show re-
duced miss rates, which contributes to their improved per-
formance in target domains.

Notably, as the diff. detector reduces missed detections,
the primary performance limitation shifts to false positives
(highlighted in green). The diff. detector tends to gener-
ate more false positive detections compared to the baseline.
This insight provides a clear direction for future improve-
ments: maintaining the diff. detectors strong recall while
reducing its false positive rate could further enhance perfor-
mance in cross-domain detection scenarios.

C.2. Error Analysis with Confusion Matrix
The confusion matrices (Fig. 1, 2, 3, 4, and 5) across various
domains provide visual confirmation of our TIDE analysis
findings. In the baseline Faster R-CNN matrices, we ob-
serve weak diagonal elements and high values in the right-
most column representing missed detections, confirming
that false negatives are the primary limitation. In contrast,
our diff. detector shows stronger diagonal elements and
significantly reduced missed detection rates across all do-
mains. The confusion matrices for our guided detectors (in
both DG and DA settings) similarly demonstrate improved
detection capabilities with fewer misses, further supporting
our conclusion that addressing missed detections is crucial
for effective cross-domain detection.



Table 9. Error Analysis with TIDE [1].

Method Main Errors Special Error mAP
Cls Loc Both Dupe Bkg Miss FP FN

Error Analysis on BDD100K
Faster RCNN R101 10.8 6.8 1.9 0.1 2.4 11.6 19.2 27.2 25.3
Diff. Detector 10.6 6.1 1.9 0.1 3.1 6.1 23.1 17.8 49.3
Diff. Guided Detector for DG 10.4 6.6 2.0 0.1 2.9 7.5 22.2 19.6 46.7
Diff. Guided Detector for DA 10.6 6.9 1.9 0.1 3.0 7.4 19.1 20.4 51.3

Error Analysis on FoggyCityscapes
Faster RCNN R101 3.3 4.1 0.6 0.1 0.6 38.8 6.6 50.0 30.7
Diff. Detector 6.5 6.2 1.2 0.3 1.5 15.3 13.0 28.2 50.7
Diff. Guided Detector for DG 5.0 6.4 1.0 0.2 1.0 19.1 8.9 31.2 54.1
Diff. Guided Detector for DA 6.3 6.0 1.0 0.3 1.3 14.9 9.9 27.9 56.6

Error Analysis on Clipart
Faster RCNN R101 9.7 5.2 1.5 0.1 1.8 19.6 13.6 38.9 27.2
Diff. Detector 11.1 4.0 1.4 0.4 4.4 4.1 18.1 12.8 64.1
Diff. Guided Detector for DG 13.1 4.7 2.1 0.1 3.0 10.5 17.1 28.2 40.5
Diff. Guided Detector for DA 10.9 5.4 1.4 0.5 4.1 7.2 17.9 17.1 58.2

Error Analysis on DAytime-Foggy
Faster RCNN R101 4.4 5.0 1.1 0.1 1.6 26.1 12.1 37.2 35.5
Diff. Detector 5.4 5.8 1.6 0.2 3.4 12.8 17.8 23.7 48.5
Diff. Guided Detector for DG 5.2 5.8 1.6 0.2 2.9 16.2 15.5 27.2 46.7

Error Analysis on Dusk-Rainy
Faster RCNN R101 8.5 6.1 1.7 0.1 1.2 14.1 17.0 27.7 34.5
Diff. Detector 8.2 6.2 1.9 0.1 2.7 7.3 21.6 18.6 48.4
Diff. Guided Detector for DG 10.9 5.9 1.8 0.1 2.2 10.2 17.5 26.3 39.1

Error Analysis on Night-Rainy
Faster RCNN R101 7.5 5.3 0.8 0.1 1.1 12.7 12.0 37.9 15.1
Diff. Detector 7.6 5.6 2.4 0.1 3.2 6.7 26.9 19.3 31.3
Diff. Guided Detector for DG 9.0 5.3 1.3 0.1 2.5 10.4 16.9 30.5 22.4

Error Analysis on Night-Sunny
Faster RCNN R101 9.9 6.4 1.9 0.1 3.1 9.4 21.1 21.7 44.3
Diff. Detector 8.4 6.4 1.7 0.2 3.4 6.8 22.7 16.8 51.6
Diff. Guided Detector for DG 8.5 6.6 1.8 0.2 3.5 7.4 21.6 18.3 50.5
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Figure 1. Confusion matrix on BDD100K.
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Figure 2. Confusion matrix on FoggyCityscapes.
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Figure 3. Confusion matrix on Clipart.
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Figure 4. Confusion matrix on Daytime-Foggy and Dusk-Rainy.
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Figure 5. Confusion matrix on Night-Rainy and Night-Sunny.



D. Qualitative Prediction Results
Fig. 6, 7, 8, 9, 10, 11, 12, 13, and 14 show qualitative pre-
diction results across all DG and DA benchmarks. These
visualizations compare the detection capabilities of our pro-
posed diff. detector against the baseline Faster R-CNN on
diverse domain shift scenarios. The visual comparisons
consistently demonstrate our method’s strong generaliza-
tion performance across real-world domain shifts, artistic
style transfers, challenging weather and lighting conditions,
and corrupted images. In all cases, our approach shows bet-
ter recall with fewer missed objects while maintaining rea-
sonable precision. These qualitative results align with our
quantitative findings, confirming that the diff. detector ef-
fectively addresses the primary limitation of ordinary detec-
tors missed detections when generalizing to novel domains.
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Figure 6. Qualitative prediction results on BDD100K.
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Figure 7. Qualitative prediction results on FoggyCityscapes.
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Figure 8. Qualitative prediction results on Clipart.
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Figure 9. Qualitative prediction results on Comic.
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Figure 10. Qualitative prediction results on Watercolor.
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Figure 11. Qualitative prediction results on Daytime-Foggy and Dusk-Rainy.
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Figure 12. Qualitative prediction results on Night-Rainy and Night-Sunny.
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Figure 13. Qualitative prediction results on Cityscapes-Corruption, example 1.
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Figure 14. Qualitative prediction results on Cityscapes-Corruption, example 2.
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