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Supplementary Material

A. Different Versions of Diff. Detector

Tab. | presents performance comparison between our
method and GDD across different versions of Stable Dif-
fusion models (SD-3-M means Stable-Diffusion-3-Medium
with official weights). Our method achieves both superior
accuracy and significantly improved efficiency, reducing in-
ference time by approximately 75% (from 679ms, 698ms,
and 976ms to 164ms, 167ms, and 244ms on SD-1.5, SD-
2.1, and SD-3-M respectively) while consistently outper-
forming GDD across all datasets with improvements of up
to 8.0% percentage points.

We observe that SD-3-M performs notably worse than
SD-1.5 and SD-2.1 on both Real to Artistic and Diverse
Weather datasets, with performance gaps of nearly 29.6%
and 27.8% mAP on Clipart and Comic datasets. Despite
these baseline differences, our method still achieves sig-
nificant improvements over GDD [15] on SD-3-M, with
gains of 12.8% and 13.3% percentage points on Clipart and
Comic datasets.

The inferior performance of SD-3-M can be attributed
to several factors: First, the UNet [32] denoising structure
in SD-1.5 and SD-2.1 outputs multi-level features, which
is advantageous for dense prediction tasks, whereas SD-3-
M uses MMDIT [12] as its denoising structure, which only
outputs single-scale intermediate features, lacking multi-
scale feature representation capabilities and making it diffi-
cult to capture fine-grained semantic information in images.
Additionally, the transformer structure in SD-3-M, while
excellent for generation tasks, has inherent limitations for
detection tasks that require precise spatial correspondence.
Its global attention mechanism may neglect local spatial
structure information, resulting in weakened feature align-
ment capability during cross-domain transfer. This also ex-
plains why the performance decline is more pronounced on
datasets with larger style differences (such as Clipart and
Comic).

However, we believe that SD-3-M with its DiT struc-
ture still holds significant exploratory value for domain gen-
eralization and adaptation tasks. Future work could ex-
plore multi-scale feature utilization, attention mechanism
improvements, and domain generalization strategies specif-
ically designed for transformer architectures, offering new
possibilities for applying diffusion models to dense predic-
tion tasks.

Table 1. Performance comparison between GDD and our model
across different Stable Diffusion versions.

Version ‘ Models ‘BDD. Foggy. Cli. Com. Wat.

GDD [15] 46.6 50.1 583 519 68.4
SD-1.5 Ours 49.3 50.7 64.1 55.2 69.7

+Gain +2.7 +0.6 +5.8 +3.3 +1.3

GDD [15] 45.8 48.3 51.7 46.6 62.1

SD-2.1 Ours 48.0 50.3 59.7 54.5 68.6
+Gain +2.2 +2.0 +8.0 +7.9 +6.5

GDD [15] 40.4 46.1 28.7 24.1 45.0
SD-3-M Ours 41.9 50.8 41.5 37.4 54.6
+Gain +1.5 +4.7 +12.8 +13.3 +9.6

Version | Models | DF DR NR NS | Inf. (ms)

GDD [15] 433 425 278 470 679

SD-1.5 Ours 485 484 313 516 164
+Gain +5.2 +5.9 +3.5 +4.6

GDD [15] 446 416 232 464 698

SD-2.1 Ours 487 473 298 518 167
+Gain +4.1 +5.7 +6.6 +5.4

GDD [15] 36.0 305 159 328 976

SD-3-M Ours 383 320 159 358 244
+Gain +2.3 +1.5 +0.0 +3.0




B. Class-wise Results and Comparisons

B.1. Analysis of Real to Artistic Results

Tab. 2, 3, and 4 present detailed class-wise results on three
Real to Artistic datasets. Our methods consistently outper-
forms existing methods across all three datasets. In DG set-
ting, our diff. detector achieves 64.1%, 55.2%, and 69.7%
mAP on Clipart, Comic, and Watercolor respectively, sur-
passing the previous SOTA results GDD [15] by 5.8%,
3.3%, and 1.3%. Similar improvements are observed in the
DA setting, where our approach reaches 58.2%, 50.5%, and
67.5% mAP.

B.2. Analysis of Diverse Weather Results

Tab. 5, 6, 7, and 8 present detailed class-wise results on
four Diverse Weather Datasets. In DG setting, our diff.
detector achieves 48.5%, 48.4%, 31.3%, and 51.6% mAP
on Daytime-Foggy, Dusk-Rainy, Night-Rainy, and Night-
Sunny respectively, surpassing the previous best methods
GDD [15] by 5.2%, 5.9%, 3.5%, and 4.6%. The im-
provements are particularly significant in challenging low-
light and adverse weather conditions such as Night-Rainy,
where our method substantially outperforms traditional ap-
proaches. These results demonstrate the robustness of our
diffusion-based features in capturing consistent object rep-
resentations across diverse weather and lighting conditions.

Table 2. Real to Artistic DG and DA Results (%) on Comic.

Methods ‘Bike Bird Car Cat Dog Person mAP

DG methods (without target data)
Div. [9] (cvPr24) 41.7 123 29.0 13.2 20.6 36.5 255
DivAlign [9] (cvpr-24) 54.1 169 30.1 25.0 27.4 459 332
DDT (SD-1.5) [14] (mm24) / / / / / / 44.4
GDD (SD-1.5) [15] (cvrr25)| 63.3 41.7 58.2 31.8 409 753 519
GDD r101) [15] (cver25) | 47.6 21.0 353 9.1 21.6 435 29.7

Qurs (Diff. Detector, SD-1.5) | 64.8 50.7 57.7 33.0 50.1 75.0 55.2
Ours (Diff. Guided, R101) 48.7 169 39.0 89 20.1 46.6 30.0

DA methods (with unlabeled target data)
DA-Faster [6] (cvPr'is) 31.1 103 155 124 193 390 21.2

SWDA [33] (cvrr'19) 36.4 21.8 29.8 15.1 23.5 496 294
STABR [20] (rccv'19) 50.6 136 31.0 7.5 164 414 26.8
MCRA [42] (eccv20) 479 20.5 374 206 245 502 335
I3Net [5] (cver21) 475 199 332 114 194 49.1 30.1
DBGL [4] (iccv2i) 35.6 20.3 339 164 26.6 453 29.7

D-ADAPT [18] (1cLr22) 52.4 254 42.3 43.77 2577 535 405
DDT Rr101) [14] (mpr24) 63.2 34.8 56.6 31.7 39.0 759 50.2

Ours (Diff. Guided, R101) 60.1 37.5 52.1 302 48.7 743 50.5

Table 3. Real to Artistic DG and DA Results (%) on Watercolor.

Methods ‘Bike Bird Car Cat Dog Person mAP

DG methods (without target data)
Div. [9] (cvrr24) 87.1 51.7 53.6 35.1 23.6 63.6 52.5
DivAlign [9] (cvpPr24) 90.4 51.8 51.9 439 359 702 574
DDT (SD-1.5) [14] (mmr24) / / / / / / 58.7
GDD (SD-1.5) [15] (cvrr25)| 99.8 70.3 57.5 49.8 51.0 82.0 684
GDD R101) [15] (cver25) | 90.1 51.0 48.5 40.2 28.9 66.7 542

Qurs (Diff. Detector, SD-1.5) | 88.0 74.9 59.0 60.5 57.2 785 69.7
Ours (Diff. Guided, R101) 83.9 53.0 54.0 425 363 69.6 56.6

DA methods (with unlabeled target data)

SWDA [33] (cvrr'19) 82.3 559 46.5 32.7 355 66.7 533
MCRA [42] (Eccv20) 87.9 52.1 51.8 41.6 33.8 68.8 56.0
UMT [10] (cvrr21) 88.2 553 51.7 39.8 43.6 699 58.1
1IOD [36] (rPamr21) 95.8 543 48.3 42.4 351 658 569
13Net [5] (cvrr21) 81.1 493 462 35.0 319 657 515
SADA [7] (cv2r) 829 54.6 52.3 40.5 37.7 682 56.0
CDG [24] (cvrr'19) 97.7 53.1 52.1 47.3 387 68.9 59.7
VDD [37] (iccvzny 90.0 56.6 49.2 39.5 38.8 653 56.6
DBGL [4] (iccv2i) 83.1 49.3 50.6 39.8 38.7 613 538
AT [26] (cvPr22) 93.6 56.1 58.9 37.3 39.6 73.8 599
LODS [25] (cvrr22) 952 53.1 469 372 476 69.3 582

DAVimNet [11] (amxiv24) | 87.2 53.6 519 349 30.3 70.1 54.8
UMGA [40] (rPamr24) 67.1 534 439 463 505 79.8 56.8
DDT r101) [14] (mpr24) 87.1 64.0 55.7 50.6 48.8 757 63.7

Qurs (Diff. Guided, R101) 93.8 68.2 57.7 52.0 53.5 79.7 67.5




Table 4. Real to Artistic DG and DA Results (%) on Clipart.

Methods

aero. bike bird boat bottle bus car cat chair cow table dog horse bike psn. plant.

. sheep sofa train tv mAP

DG methods (without target data)

Div. [9] (cvrr24) 29.3 50.9 23.4 353 453 49.8 33.4 10.6 43.3 223 31.6 4.5 329 519 40.2 51.1 18.2 29.6 42.3 28.5 33.7
DivAlign [9] (cvrr24) 344 64.4 22.7 27.0 45.6 59.2 329 7.0 46.8 55.8 28.9 14.5 444 58.0 552 52.1 14.8 38.4 42.5 339 389
DDT (SD-1.5) [14] (mm24) / / / / / /o / / / / / / / / / / / /I 474
GDD (sD-1.5) [15] (cvrr25)| 63.7 86.1 49.8 56.5 52.9 50.9 67.3 19.7 74.7 34.3 57.7 419 63.2 89.4 89.6 59.2 235 64.9 659 552 58.3
GDD r101) [15] (cver25) | 19.3 57.8 28.4 37.4 57.8 81.3 46.3 3.8 57.8 27.2 283 19.6 42.5 50.9 57.8 59.8 15.6 36.0 37.7 50.5 40.8
QOurs (Diff. Detector, SD-1.5) | 75.7 72.7 59.1 66.2 63.5 62.9 76.5 19.8 78.5 46.9 59.1 42.7 66.9 93.7 91.2 63.4 41.0 70.4 68.3 62.5 64.1
QOurs (Diff. Guided, R101) 31.1 56.2 26.4 33.9 559 724424102 56.5 11.6 29.0 12.2 36.3 654 59.5 579 17.9 34.0 39.1 51.6 40.5
DA methods (with unlabeled target data)
SWDA [33] (cvpr'19) 26.2 48.5 32.6 33.7 38.5 543 37.1 18.6 34.8 583 17.0 12.5 33.8 655 61.6 52.0 9.3 249 54.1 49.1 38.1
HTCN [3] (cver20) 33.6 589 34.0 234 45.6 57.0 39.8 12.0 39.7 51.3 21.1 20.1 39.1 72.8 63.0 43.1 19.3 30.1 50.2 51.8 40.3
SAPNet [22] (eccv20) 27.4 70.8 32.0 27.9 424 63.5 47.5 14.3 48.2 46.1 31.8 17.9 43.8 68.0 68.1 49.0 18.7 204 55.8 51.3 42.2
UMT [10] (cver21) 39.6 59.1 32.4 35.0 45.1 619 484 7.5 46.0 67.6 21.4 29.5 48.2 759 70.5 56.7 259 289 394 43.6 44.1
1IOD [36] (rPamr21) 41.5 52.7 34.5 28.1 43.7 585 41.8 15.3 40.1 54.4 26.7 28.5 37.7 75.4 63.7 48.7 16.5 30.8 54.5 48.7 42.1
SADA [7] cv2r) 29.4 56.8 30.6 34.0 49.5 50.5 47.7 18.7 48.5 64.4 20.3 29.0 42.3 84.1 73.4 374 20.5 39.8 41.2 48.0 433
UaDAN [13] (rmm21) 35.0 72.7 41.0 244 21.3 69.8 53.5 2.3 342 61.2 31.0 29.5 479 63.6 622 61.3 139 7.6 48.6 23.9 40.2
DBGL [4] (iccv2y 28.5 52.3 34.3 32.8 38.6 66.4 38.2 25.3 39.9 474 239 179 389 783 61.2 51.7 26.2 289 56.8 44.5 41.6
AT [26] (cvPr22) 33.8 609 38.6 494 524 539 56.7 7.5 52.8 63.5 34.0 25.0 622 72.1 77.2 5777 27.2 52.0 55.7 54.1 49.3
D-ADAPT [18] (rcrr22) | 56.4 63.2 42.3 40.9 453 77.0 48.7 254 44.3 58.4 314 245 47.1 753 69.3 435 279 34.1 60.7 64.0 49.0
TIA [41] (cvPr22) 42.2 66.0 36.9 37.3 43.7 71.8 49.7 182 449 58.9 18.2 29.1 40.7 87.8 67.4 49.7 274 27.8 57.1 50.6 46.3
LODS [25] (cvpr22) 43.1 61.4 40.1 36.8 48.2 45.8 48.3 20.4 44.8 53.3 32.5 26.1 40.6 86.3 68.5 48.9 254 33.2 44.0 56.5 45.2
CIGAR [27] (cvPr23) 352 55.0 39.2 30.7 60.1 58.1 46.9 31.8 47.0 61.0 21.8 26.7 44.6 52.4 68.5 544 313 388 56.5 63.5 46.2
CMT [2] (cvrr23) 39.8 56.3 38.7 39.7 604 350 56.0 7.1 60.1 60.4 35.8 28.1 67.8 84.5 80.1 55.5 20.3 32.8 42.3 38.2 47.0
DAVimNet [11] arxiv24) | 33.2 75.5 33.1 25.5 27.9 69.9 50.1 16.9 40.8 47.0 32.6 24.1 32.5 77.0 69.5 37.6 233 412 57.0 48.2 43.8
UMGA [40] (rramr24) 38.7 77.2 39.0 354 53.8 78.1 47.5 17.5 38.2 49.9 20.0 18.0 442 83.5 74.6 57.7 26.7 26.0 55.4 58.3 47.0
CAT [19] (cvrr24) 40.5 64.1 38.8 41.0 60.7 555 55.6 14.3 54.7 59.6 46.2 20.3 58.7 929 62.6 57.5 224 40.9 49.5 46.0 49.1
DDT (r101) [14] (vm24) 60.9 65.7 40.9 52.7 55.2 82.8 63.3 14.0 59.2 56.2 39.7 39.6 52.7 97.7 83.1 60.1 29.0 44.7 53.1 61.8 55.6
QOurs (Diff. Guided, R101) 54.2 53.5 52.0 57.4 62.5 80.6 65.5 22.0 64.1 60.3 44.3 36.5 60.6 92.5 852 63.2 42.9 44.0 59.8 61.9 58.2




Table 5. Generalization detection Results (%) on Daytime-Foggy.

Table 6. Generalization detection Results (%) on Dusk-Rainy.

Methods ‘Bus Bike Car Motor Person Rider Truck mAP Methods ‘Bus Bike Car Motor Person Rider Truck mAP
IBN-Net [29] (cvrr'18) 29.9 26.1 445 244 262 335 224 296 IBN-Net [29] (cvrr'18) 37.0 148 50.3 114 173 133 384 26.1
SW [30] (iccvi9) 30.6 26.2 44.6 25.1 30.7 346 23.6 308 SW [30] (zcevi9) 352 16.7 50.1 104 20.1 13.0 38.8 26.3
IterNorm [17] (cver19) 29.7 21.8 424 244 260 333 21.6 285 IterNorm [17] (cver'19) 329 14.1 389 11.0 155 11.6 357 228
ISW [8] (cvrr21) 29.5 264 492 279 30.7 348 240 31.8 ISW [8] (cvrr21) 347 16.0 50.0 11.1 17.8 12.6 38.8 259
CDSD [35] (cvpPr22) 329 28.0 48.8 29.8 325 382 241 335 CDSD [35] (cvpr22) 37.1 19.6 509 134 19.7 163 40.7 282
CLIPGap [34] (cvpr23) 36.1 343 58.0 33.1 39.0 439 25.1 385 CLIPGap [34] (cvpPr23) 37.8 22.8 60.7 16.8 26.8 187 424 323
SRCD [31] (rnnLs'24) 36.4 30.1 52.4 313 334 40.1 277 359 SRCD [31] (rvNLs™24) 39.5 21.4 50.6 119 20.1 17.6 40.5 28.8
G-NAS [38] (a44124) 324 312 57.7 319 38.6 385 245 364 G-NAS [38] (aaar24) 44.6 223 66.4 147 321 19.6 458 35.1
OA-DG [21] (aa4r24) - - - - - - - 38.3 OA-DG [21] (aaar24) - - - - - - - 339
DivAlign [9] (cvrr24) - - - - - - - 37.2 DivAlign [9] (cvrr24) - - - - - - - 38.1
UFR [28] (cvrr24) 36.9 358 61.7 33.7 395 422 275 39.6 UFR [28] (cvrr24) 37.1 21.8 67.9 164 274 179 439 332
Prompt-D [23] (cver24)  |36.1 34.5 584 333 405 442 262 39.1 Prompt-D [23] (cver24)  |39.4 25.2 60.9 204 299 165 439 337
DIDM [16] (Arxiv25) 38.5 31.6 62.1 358 36.8 427 273 393 DIDM [16] (arxiv25) 41.6 26.3 66.6 16.6 309 219 44.1 354
PhysAug [39] (arxiv24) - - - - - - - 4038 PhysAug [39] (arxiv24) - - - - - - - 412
GDD (SD-1.5) [15] (cvpr25)|37.5 32.4 679 35.6 483 446 37.1 433 GDD (SD-1.5) [15] (cvPr25)|49.7 27.9 749 182 455 245 568 425
GDD R101) [15] (cvpr25) |39.3 35.8 69.4 37.7 488 49.7 323 447 GDD (r101) [15] (cver2s) |43.1 23.9 73.6 134 332 22.1 523 374
Ours (Diff. Detector, SD-1.5) |39.6 41.7 72.8 439 537 533 348 485 Ours (Diff. Detector, SD-1.5) |54.8 36.1 77.6 27.6 49.3 324 61.1 484
Ours (Diff. Guided, R101) 37.6 41.1 70.8 41.0 50.7 514 34.6 46.7 QOurs (Diff. Guided, R101) 46.7 255 749 164 37.0 214 519 39.1

Table 7. Generalization detection Results (%) on Night-Rainy.

Table 8. Generalization detection Results (%) on Night-Sunny.

Methods ‘Bus Bike Car Motor Person Rider Truck mAP Methods ‘Bus Bike Car Motor Person Rider Truck mAP
IBN-Net [29] (cvrr18) 24.6 10.0 284 09 8.3 9.8 18.1 143 IBN-Net [29] (cvrr'18) 37.8 273 49.6 15.1 292 27.1 389 32.1
SW [30] (iccvi9) 223 7.8 276 02 103  10.0 17.7 13.7 SW [30] (iccvii9) 38.7 29.2 498 16.6 31.5 28.0 402 334
IterNorm [17] (cvPr'19) 214 6.7 220 09 9.1 10.6 17.6 12.6 IterNorm [17] (cvrr'19) 38.5 23.5 389 158 26,6 259 381 29.6
ISW [8] (cvrr21) 225 114 269 04 9.9 9.8 175 14.1 ISW [8] (cver21) 38.5 285 49.6 154 319 275 413 332
CDSD [35] (cvpPr22) 244 11.6 295 04 105 114 192 153 CDSD [35] (cvpPr22) 40.6 35.1 50.7 19.7 347 321 434 36.6
CLIPGap [34] (cvrr23) 28.6 12.1 36.1 9.2 123 9.6 229 187 CLIPGap [34] (cvPr23) 37.7 343 58.0 192 37.6 285 429 369
SRCD [31] (7VNLS'24) 26.5 129 324 0.8 10.2 125 240 17.0 SRCD [31] (7NNLS 24) 43.1 32.5 523 20.1 348 315 429 36.7
G-NAS [38] (4a44124) 28.6 9.8 384 0.1 138 98 214 174 G-NAS [38] (a4r24) 46.9 40.5 67.5 265 507 354 478 450
OA-DG [21] (aaAr24) - - - - - - - 16.8 OA-DG [21] (aaar24) - - - - - - - 38.0
DivAlign [9] (cvPr24) - - - - - - - 24.1 DivAlign [9] (cvPr24) - - - - - - - 42.5
UFR [28] (cvPr24) 299 11.8 36.1 94 13.1 105 233 19.2 UFR [28] (cver24) 43.6 38.1 66.1 14.7 49.1 264 475 4038
Prompt-D [23] (cvrr24)  |25.6 12.1 35.8 10.1 142 129 229 192 Prompt-D [23] (cver24)  |40.9 35.0 59.0 21.3 404 299 429 385
DIDM [16] (Arxiv'25) 31.6 12.1 383 3.8 128 10.6 250 19.2 DIDM [16] (arxiv'25) 43.5 40.1 65.1 224 452 325 453 420
PhysAug [39] (Arxiv'24) - - - - - - - 23.1 PhysAug [39] (arxiv24) - - - - - - - 44.9
GDD (SD-1.5) [15] (cvrr25)|42.0 15.0 53.6 6.5 262 138 375 27.8 GDD (SD-1.5) [15] (cvrr25)|49.6 42.1 70.5 214 545 382 526 470
GDD Rr101) [15] (cver25) (354 12.7 462 3.2 13.8 10.7 29.7 21.7 GDD (r101) [15] (cver25) [S51.0 42.8 72.2 27.5 559 39.5 52.0 48.6
Ours (Diff. Detector, SD-1.5) |42.6 21.3 57.3 7.2 29.7 17.7 435 313 Ours (Diff. Detector, SD-1.5) |53.1 47.5 72.7 294 583 444 554 51.6
Ours (Diff. Guided, R101) 31.6 11.2 479 7.0 162 129 298 224 Qurs (Diff. Guided, R101) 51.7 456 73.1 293 57.8 423 54.0 505




C. Error Analysis
C.1. Error Analysis with TIDE

TIDE [1] provides a comprehensive framework for analyz-
ing object detection errors. The main error categories in-
clude Cls (classification errors with correct location), Loc
(localization errors with correct class), Both (combined
class and location errors), Dupe (duplicate detections), Bkg
(false background detections), Miss (missed objects), FP
(false positives not matching any ground truth), and FN
(ground truth objects not detected).

The TIDE analysis results in Tab. 9 reveals that the most
significant factor limiting standard Faster R-CNN perfor-
mance across DG benchmarks is missed detections (Miss
and FN). This is evident from the consistently high values
in these categories, highlighted in red in the table. Our pro-
posed diff. detector significantly reduces these missed de-
tection errors across all test domains, leading to substantial
mAP improvements.

Similarly, when ordinary detectors are guided by the diff.
detectors (in both DG and DA settings), they also show re-
duced miss rates, which contributes to their improved per-
formance in target domains.

Notably, as the diff. detector reduces missed detections,
the primary performance limitation shifts to false positives
(highlighted in green). The diff. detector tends to gener-
ate more false positive detections compared to the baseline.
This insight provides a clear direction for future improve-
ments: maintaining the diff. detectors strong recall while
reducing its false positive rate could further enhance perfor-
mance in cross-domain detection scenarios.

C.2. Error Analysis with Confusion Matrix

The confusion matrices (Fig. 1, 2, 3, 4, and 5) across various
domains provide visual confirmation of our TIDE analysis
findings. In the baseline Faster R-CNN matrices, we ob-
serve weak diagonal elements and high values in the right-
most column representing missed detections, confirming
that false negatives are the primary limitation. In contrast,
our diff. detector shows stronger diagonal elements and
significantly reduced missed detection rates across all do-
mains. The confusion matrices for our guided detectors (in
both DG and DA settings) similarly demonstrate improved
detection capabilities with fewer misses, further supporting
our conclusion that addressing missed detections is crucial
for effective cross-domain detection.



Table 9. Error Analysis with TIDE [1].

Main Errors

Special Error

Method mAP
Cls Loc Both Dupe Bkg Miss FP FN
Error Analysis on BDD100K
Faster RCNN R101 10.8 6.8 1.9 0.1 24 11.6 19.2 272 25.3
Diff. Detector 10.6 6.1 1.9 0.1 3.1 6.1 23.1 17.8 49.3
Diff. Guided Detector for DG 10.4 6.6 2.0 0.1 29 7.5 222 19.6 46.7
Diff. Guided Detector for DA 10.6 6.9 1.9 0.1 3.0 7.4 19.1 20.4 51.3
Error Analysis on FoggyCityscapes
Faster RCNN R101 33 4.1 0.6 0.1 0.6 38.8 6.6 50.0 30.7
Diff. Detector 6.5 6.2 1.2 0.3 1.5 15.3 13.0 28.2 50.7
Diff. Guided Detector for DG 5.0 6.4 1.0 0.2 1.0 19.1 8.9 31.2 54.1
Diff. Guided Detector for DA 6.3 6.0 1.0 0.3 1.3 14.9 9.9 27.9 56.6
Error Analysis on Clipart
Faster RCNN R101 9.7 52 1.5 0.1 1.8 19.6 13.6 38.9 272
Diff. Detector 11.1 4.0 1.4 0.4 4.4 4.1 18.1 12.8 64.1
Diff. Guided Detector for DG 13.1 4.7 2.1 0.1 3.0 10.5 17.1 28.2 40.5
Diff. Guided Detector for DA 10.9 54 1.4 0.5 4.1 7.2 17.9 17.1 58.2
Error Analysis on DAytime-Foggy
Faster RCNN R101 44 5.0 1.1 0.1 1.6 26.1 12.1 37.2 35.5
Diff. Detector 54 5.8 1.6 0.2 34 12.8 17.8 23.7 48.5
Diff. Guided Detector for DG 52 5.8 1.6 0.2 2.9 16.2 155 27.2 46.7
Error Analysis on Dusk-Rainy
Faster RCNN R101 8.5 6.1 1.7 0.1 1.2 14.1 17.0 27.7 34.5
Diff. Detector 8.2 6.2 1.9 0.1 2.7 7.3 21.6 18.6 48.4
Diff. Guided Detector for DG 10.9 59 1.8 0.1 22 10.2 17.5 26.3 39.1
Error Analysis on Night-Rainy
Faster RCNN R101 7.5 53 0.8 0.1 1.1 12.7 12.0 37.9 15.1
Diff. Detector 7.6 5.6 24 0.1 32 6.7 26.9 19.3 31.3
Diff. Guided Detector for DG 9.0 53 1.3 0.1 2.5 104 16.9 30.5 224
Error Analysis on Night-Sunny
Faster RCNN R101 9.9 6.4 1.9 0.1 3.1 9.4 21.1 21.7 44.3
Diff. Detector 8.4 6.4 1.7 0.2 34 6.8 22.7 16.8 51.6
Diff. Guided Detector for DG 8.5 6.6 1.8 0.2 35 7.4 21.6 18.3 50.5
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D. Qualitative Prediction Results

Fig. 6,7, 8,9, 10, 11, 12, 13, and 14 show qualitative pre-
diction results across all DG and DA benchmarks. These
visualizations compare the detection capabilities of our pro-
posed diff. detector against the baseline Faster R-CNN on
diverse domain shift scenarios. The visual comparisons
consistently demonstrate our method’s strong generaliza-
tion performance across real-world domain shifts, artistic
style transfers, challenging weather and lighting conditions,
and corrupted images. In all cases, our approach shows bet-
ter recall with fewer missed objects while maintaining rea-
sonable precision. These qualitative results align with our
quantitative findings, confirming that the diff. detector ef-
fectively addresses the primary limitation of ordinary detec-
tors missed detections when generalizing to novel domains.
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Figure 6. Qualitative prediction results on BDD100K.



DA DG Diff. Detector FR-R101-Baseline GroundTruth

Figure 7. Qualitative prediction results on FoggyCityscapes.
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Figure 8. Qualitative prediction results on Clipart.
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Figure 9. Qualitative prediction results on Comic.
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