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1. Appendix / Supplemental Material

The organization of this appendix is as follows: Sec. 2
shows some 3D reconstruction results on our camera-
controlled videos. We provide some discussion regarding
other related works in Sec. 3. Sec. 4 gives more details re-
garding the data construction process.

Sec. 5 presents more implementation details. We give
some calculation details of some metrics in Sec. 6. Sec. 7
gives more ablation studies results and all the metric results
for the ablations in the main paper. The details of model dis-
tillation is depicted in Sec. 8. Then, we provide more qual-
itative comparisons in Sec. 9. Finally, we present some dis-
cussions on limitations and present failure cases in Sec. 10.

Besides, in all visual results, the first image in each row
represents the camera trajectory of a video. Each small
tetrahedron on this image represents the position and orien-
tation of a camera for one video frame. Its vertex stands for
the camera location, while the base represents the imaging
plane of the camera. The red arrows indicate the movement
of camera position but do not depict the camera rotation.
The camera rotation can be observed through the orienta-
tion of the tetrahedrons.

2. 3D Reconstruction on Generated Videos

Our method generates high-quality dynamic videos with
conditional camera poses, effectively transforming video
generative models into view synthesizers. The strong 3D
consistency of these generated videos enables high-quality
3D reconstruction. Specifically, we use FLARE [19] to in-
fer detailed 3D point clouds from frames extracted from
our generated videos. As shown in Fig. 1, our approach
produces videos that can be reconstructed into high-quality
point clouds, demonstrating the superior 3D consistency
achieved by our models.

∗ Work was done during Hao He’s internship at ByteDance Seed.
† Corresponding authors.

3. Discussion on Other Related Work
Early works on perpetual scene generation, such as Infinite-
Nature [10], adopt a render, refine, repeat pipeline, us-
ing differentiable rendering [6] to autoregressively gener-
ate video frames along camera trajectories. InfiniteNature-
Zero [7] eliminates the need for video datasets by solv-
ing this problem with self-supervised cycle reconstruction
loss and adversarial loss. Persistent Nature [3] and Diff-
Dreamer [2] improve 3D consistency and visual quality of
generated frames, respectively. WonderJourney [17] repre-
sents a significant advantage in this field by enabling users
to journey through a sequence of coherently connected
scenes. Dreamscene360 [20], Wonderworld [16] and Gaus-
sianCity [15] utilize 3D Gaussian-based reconstruction and
rendering methods to generate unconstrained scenes. Won-
derland [8] further builds the reconstruction model in the
latent space of diffusion models to make perpetual scene
generation more efficient. Despite their effectiveness, these
methods struggle to handle dynamic content in generated
scenes and require per-scene optimization, which is time-
consuming. In contrast, our method leverages pretrained
video diffusion models to improve both dynamics and effi-
ciency.

4. More Details in the Dataset Construction
After obtaining dynamic videos, we employ TMO [4] mo-
tion segmentation method to extract motion object masks.
While TMO theoretically requires both optical flow and
RGB images as input, we achieved satisfactory results by
using RGB images for both inputs. To improve the robust-
ness of subsequent SfM matching, we dilate the obtained
masks by 5 pixels.

With the masks extracted, we utilize VGGSfM [14] (ver-
sion 2.0.0) with its open-source checkpoint, code, and cor-
responding configuration files to estimate camera poses
from video clips. To conserve GPU memory and acceler-
ate processing, we sample frames at 4 fps from the orig-
inal videos, providing both RGB images and correspond-
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Videos Generated by CameraCtrl II Point Cloud

Figure 1. 3D reconstruction on generated videos by CAMERACTRL II.

ing masks to VGGSfM. After obtaining camera poses, we
observed that some camera trajectories were either frag-
mented or exhibited shaking in certain regions. We imple-
mented a post-processing method to filter out these prob-
lematic videos and their associated camera trajectories.

For calibration, we sample frames at 1 fps and extract
metric depth using the Depth-Pro [1] model. Depth-Pro re-
quires camera intrinsics as input to enhance accuracy, for
which we use the intrinsics estimated by VGGSfM. After
obtaining both metric depth and VGGSfM depth for multi-
ple frames, we estimate a scale factor for each video scene
using Equation 2 from the main paper. This scale factor
is then multiplied with the translation vectors in the extrin-
sic matrices to obtain calibrated camera poses. Since we
initially sampled frames for VGGSfM processing, we inter-
polate the camera poses to match the original video frame
count.

We then analyzed the distribution of camera trajectory
types across the dataset as described in the main paper.
We found a long-tail distribution, as shown in Figure 1.
To balance the dataset, we removed trajectories from over-
represented categories, resulting in the more balanced dis-
tribution shown in Figure 2. Note that we processed and bal-
anced the data in batches; the distributions shown here rep-
resent one such batch. This process yielded approximately
83K samples.

Additionally, we applied the same processing pipeline
to the original RealEstate10K [21] dataset, obtaining about
37K samples. Throughout the entire pipeline, excluding ini-

tial dynamic video filtering but including camera trajectory
anomaly filtering, balancing, and SfM failures, we filtered
out approximately 70% of the videos. Our final dataset con-
tains approximately 120K samples. We provide some sam-
ples of our dataset in the supplementary material.

5. More Implementation Details

Our CAMERACTRL II is built upon an internal research-
focused diffusion transformer model, which shares a sim-
ilar architecture with MMDiT [5]. The model consists
of patchify layers, DiT blocks, and output layers, where
each DiT block comprises self-attention layers, MLP,
and AdaLN components. As a latent diffusion model,
it employs a temporal causal VAE tokenizer similar to
MAGViT2 [18], with downsampling rate 4 for temporal and
8 for spatial. This base video diffusion model is jointly
trained on images and videos at 192×320 resolution. Since
the temporal downsample ratio of the causal VAE is 4, we
also sample the camera poses every 4 frames, resulting in
the same number of camera poses to the visual features.

In implementing our camera-control model, as described
in the main paper, we only introduced an additional camera
patchify layer, with new parameters limited to this layer’s
weights and bias. During training, we kept all base video
diffusion model parameters unfrozen, allowing joint opti-
mization of all parameters.

Our training strategy involves two stages. In the first
stage, we train the single-clip camera control model at
192×384 resolution, using video clips ranging from 2 to



Data Pipeline FVD↓ Motion strength ↑ TransErr↓ RotErr ↓ Geometric consistency ↑ Appearance consistency ↑

w/o Dyn. Vid 143.28 129.40 0.2069 2.02 78.50 0.8031
w/o Scale Calib. 116.92 301.68 0.2121 2.14 82.10 0.8520
w/o Dist. Balance 111.42 309.24 0.2834 4.56 85.96 0.8500

Full Pipeline 112.46 306.99 0.1830 1.74 86.50 0.8654

Table 1. All metric results of ablation study on dataset construction process.

10 seconds in duration. The data composition maintains a
4:1 ratio between camera-labeled and unlabeled data, while
Text-to-Video and Image-to-Video tasks are distributed in a
7:3 ratio. The second stage operates at an increased resolu-
tion of 384×640 to enhance output quality and incorporates
video extension training. This stage maintains the same 4:1
ratio of camera-labeled to unlabeled data, with task ratios
of 2:3:5 for video extension, image-to-video (single clip),
and text-to-video (single clip) respectively. The joint train-
ing of video extension alongside single-clip I2V and T2V
tasks represents a crucial design choice, enabling the model
to learn extension capabilities while preserving single-clip
camera control performance. During video extension train-
ing, the number of condition frames from the previous clip
ranges from a minimum of 5 frames to a maximum of
50Both training stages utilize the AdamW optimizer. The
learning rate was initially set to 1 × 10−4, with a warm-
up period from 5 × 10−5 over 500 steps. , weight decay
of 0.01, and betas of 0.9 and 0.95. The learning rate was
finally decayed to 1 × 10−5 using the cosine learning rate
scheduler. We use 64 H100 GPUs for the first stage and 128
H100 GPUs for the second stage.

6. More Details on Metric

6.1. Details on TransErr and RotErr

The TransErr and RotErr measure the alignment between
the ground truth camera trajectory and the estimated cam-
era trajectory from the generated video clips. Similar to
the dataset construction, we use the TMO [4] to extract the
motion pattern of the generated vides, then use the VG-
GSfM [14] to estimate the camera parameters. Since SfM
is only accurate up to a relative scale, camera poses ex-
tracted from generated videos present two key challenges:
1) The camera coordinate system may have a systematic
offset from the ground truth coordinate system. 2) The dis-
tances between predicted camera poses might be scaled ar-
bitrarily. To address these issues, we align the estimated
trajectory to the ground truth trajectory using the ATE [12]
approach before computing error metrics. This alignment
process involves:

1. Centering both trajectories by subtracting their respec-
tive means.

2. Finding the optimal scale factor between the trajecto-
ries.

3. Computing the optimal rotation between the centered
trajectories using Singular value decomposition.

4. Determining the translation that aligns the trajectories.
After alignment, we calculate: TransErr: The aver-

age Euclidean distance between corresponding camera po-
sitions. RotErr: The average angular difference between
corresponding camera orientations.

6.2. Details of Motion Strength

This quantitative measure calculates the average motion
magnitude of foreground objects across video frames, pro-
viding insights into the model’s ability to generate dynamic
content. First, we extract dense optical flow fields between
consecutive frames using RAFT [13]. These flow fields cap-
ture the pixel-wise displacement vectors (u, v) that repre-
sent motion between frames. To focus exclusively on ob-
ject motion rather than camera movement, we utilize object
segmentation masks extracted using TMO to isolate fore-
ground regions. For each frame pair, we calculate the flow
magnitude as

√
u2+2 and convert it from radians to degrees

for interpretability. The motion strength value for a video
is then computed as the average flow magnitude across all
foreground pixels in all frames. This provides a robust mea-
sure of object motion that is independent of camera move-
ment, allowing us to quantitatively assess the dynamic qual-
ity of generated videos.

7. More Experiment Results

7.1. Metric on the Base Video Diffusion Model

We provide the metrics of the base video diffusion model.
We use the same dataset as the CAMERACTRL II for eval-
uating, with the resolution in 192 × 320. The metric for
FVD, Motion strength, Geometric consistency are 310.98,
320.32. From the comparison of out model and the base
video diffusion model, we conclude that the camera control
training does not have negative impact on the visual quality
and the dynamic. Since the base video diffusion model can-
not take the camera parameters as input, we cannot calculate
the TransErr, RotErr, and Geometric consistency. And the
base video diffusion model are not trained for video exten-
sion, we do not have the result for Appearance consistency
metric either.



Model FVD↓ Motion strength ↑ TransErr ↓ RotErr ↓ Geometric consistency ↑ Appearance consistenct ↑

Complex Encoder 132.32 301.23 0.1826 1.88 84.00 0.8760
Multilayer Inj. 128.53 247.23 0.1865 1.78 85.00 0.8210
w/o Joint Training 122.10 279.82 0.2098 1.97 81.92 0.8400

CAMERACTRL II 112.46 306.99 0.1830 1.74 86.50 0.8654

Table 2. All metric results of ablation study on the impact of our model architecture and training strategy for single-clip camera-controlled
video generation.

Model FVD↓ Motion strength ↑ TransErr ↓ RotErr ↓ Geometric consistency ↑ Appearance consistency ↑

Different Ref. 118.32 303.66 0.1963 1.94 87.37 0.8032
Noised Condition 136.78 306.21 0.1847 1.85 83.87 0.7843

CAMERACTRL II 112.46 306.99 0.1830 1.74 86.50 0.8654

Table 3. All metric results of ablation study on key design choices in extending the single-clip model to enable scene exploration.

Model FVD ↓ Motion strength ↑ TransErr ↓ RotErr ↓ Geometric consistency ↑ Appearance consistenncy ↑

Scale on Time Embedding 132.32 303.64 0.1993 1.82 85.00 0.8070
Camera CFG’ 114.20 298.42 0.1915 1.79 84.20 0.8690
Learnable Null Plücker 110.32 287.82 0.2098 1.91 87.90 0.8320
Noised Condition∗ 140.98 303.76 0.1901 1.88 82.90 0.7982

CAMERACTRL II 112.46 306.99 0.1830 1.74 86.50 0.8654

Table 4. Extra ablation studies.

7.2. Comprehensive Metric Results

Due to the constraint of the space, in the main paper, we
only include the highly related metric results for the ablation
experiments. Here, we provide the results of all metrics in
Tab. 1, Tab. 2, and Tab. 3.

7.3. More Ablation Study

We provide more ablation studies in Tab. 4. First, we ex-
plore a different approach for incorporating scale informa-
tion. Instead of directly calibrating camera poses, we exper-
iment with injecting scale factors as timestep-like embed-
ding while using uncalibrated camera poses (Tab. 4 Scale
on Time Embedding). Although this theoretically allows
the model to learn the scale normalization to metric space,
it shows degraded in the camera control accuracy, This sug-
gests that providing the model with the normalized scene
scale directly helps the model better learn geometric rela-
tionship, rather than requiring it to implicitly learn the uni-
fied scene scale.

We then explore different strategies for camera classifier-
free guidance during inference. Besides the approach de-
scribed in Equ. 3 of the main paper, we evaluate an alterna-
tive formulation

ϵ̂θ(zt, c, s, t) = ϵθ(zt, ϕtext, ϕcam)

+ wtext(ϵθ(zt, c, ϕcam)− ϵθ(zt, ϕtext, ϕcam))

+ wcam1
(ϵθ(zt, ϕtext, s)− ϵθ(zt, ϕtext, ϕcam))

+ wcam2
(ϵθ(zt, c, s)− ϵθ(zt, c, ϕcam)) (1)

Data Pipeline FVD↓ TransErr↓ RotErr ↓ Sample time (s) ↓

Before distillation 73.11 0.1892 1.66 13.83
Progressive distill 86.32 0.2001 1.90 2.61
APT 198.21 0.2500 2.56 0.59

Table 5. Model comparison before and after the distillation. The
inference time is tested when generating 4 second 12fps video with
4 H800 GPU.

As shown in Tab. 4 Camera CFG’, this alternative approach
does not improve camera pose control capabilities. Besides,
it will increase the inference time. Therefore, we opt for the
original formulation presented in the main paper.

After that, in the multi-clip video extension, our initial
choice on adding noise on the previous clips during train-
ing leads to misalignment between training and inference
thus results in degraded performance (Tab. 3). Here, we in-
vestigate whether adding small noise on the previous clips
during the inference will compensate for this gap, results
are shown in Tab. 4 Noised Condition∗. It turns out that this
strategy does not improve the performance.

Finally, we examine an alternative approach for handling
unlabeled data: using a learnable null embedding. The re-
sults in Tab. 4 Learnable Null Plücker demonstrate that the
learnable embedding does not improve camera control met-
rics. Our chosen approach of using zero tensors is more
intuitive and potentially reduces model learning complexity
compared to the learnable alternative.



8. Details of Model Distillation
Our model employs two distinct classifier-free guidance
mechanisms for text and camera control. Without any form
of distillation, our inference process requires 96 (32×3)
neural function evaluations (NFE). To accelerate inference
and improve user experience, we implemented a two-phase
distillation approach. First, we employed progressive dis-
tillation [11] to reduce the required NFEs from 96 to 16
while maintaining visual quality. As shown in the first two
row of Tab. 5, the distilled model does not exist significant
degradation in terms of visual quality and camera control
accuracy. When generating a 4 second videos in 12fps with
4 H800 GPUs, the sample time is decreased significantly,
from 13.83 second to 2.61 second. This sample time con-
tains the DiT model inference time and the VAE decode
time.

To further accelerate, we applied the recent distillation
method APT [9] to distill the model to single step. As
shown in the last row of Tab. 5, this single step model offers
the fastest generation speed, enabling near real-time video
creation with only a modest reduction in visual quality and
camera control.

9. More Qualitative Comparisons
We provide more qualitative comparisons in Fig. 6 with
CAMERACTRL II and the state-of-the-art camera control
model AC3D. Compared to AC3D, our model can strictly
follow the input camera trajectory input, and generate the
dynamic videos. For example, for the first camera tra-
jectory, AC3D fails to generate the left movement at the
end of the camera trajectory. For the second example, our
model generates the camera movement and turn success-
fully, while AC3D continues to generate the leftward move-
ment. For the last example, the camera trajectory shows
camera turn left in a large degree (near 90 degree). Our
model can generate a video follows such a trajectory, while
AC3D fails to generate a video in such large camera turn.

10. Limitations and Failure Cases
Limitation and Future Work. Our current approach has
several limitations for future investigation. First, CAM-
ERACTRL II occasionally struggles to resolve conflicts be-
tween camera movement and scene geometry, sometimes
resulting in physically implausible camera paths that inter-
sect with scene structures. Additionally, while our method
achieves accurate camera control, the overall geometric
consistency of generated scenes could be further improved,
especially when dealing with complex camera trajectories.
Failure Cases. While our method demonstrates strong
performance in most scenarios, we also identify limitations
in handling conflicts between camera trajectories and phys-
ical scene constraints. Fig. 5 illustrates such a failure case

that aligns with the discussion in our main paper. In this
example, we provide a forward camera trajectory when left
and right camera view change. There a fence blocks the in-
tended path. An ideal physically-aware model would rec-
ognize this constraint and stop the camera movement at
the fence. However, our model generates a physically im-
plausible result where the fence structure deteriorates as the
camera passes through it. We believe this limitation stems
from the video generation model’s incomplete understand-
ing of physical constraints in the world. Current video dif-
fusion models primarily learn appearance and motion pat-
terns from data without explicit physical reasoning capa-
bilities. This physical awareness challenge represents an
important direction for future research in camera-controlled
video generation, potentially bridging the gap between vi-
sual generation and physical simulation.
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Figure 2. Camera trajectory type distribution before the dataset
balancing

Figure 3. Camera trajectory type distribution after the dataset bal-
ancing
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Figure 4. Visualization results between our models before and after the distillation. We generate these videos in the I2V setting, with the
first image as the condition images.

Figure 5. Visualization results of a failure case. We generate this video in the I2V setting, with the first image as the condition image.



People are walking along a busy city street with cars driving by.

The video shows a woman wearing a hat and carrying a basket as she walks along 
a path beside tea plantations in Sichuan.

The shop displays a variety of goods, including snacks and dried fruits. Several people 
are seen walking along the street, some stopping to browse the shop's offerings.

Figure 6. Qualitative comparisons. Rows 1, 3, 5 give the results of AC3D, results of CAMERACTRL II are shown in rows 2, 4, 6.


