
S.1. Additional Technical Details
S.1.1. Spatio-temporal transformer
Our spatio-temporal transformer consists of several temporal
and spatial attention blocks. For temporal attention blocks,
we apply self-attention along the temporal dimension. For
spatial blocks, we apply self-attention along the node dimen-
sion to aggregate information across different nodes. The
transformer consists of 12 temporal blocks and 12 spatial
blocks, with hidden dimension of 384.

S.1.2. Procrustes analysis for SE(3) estimation
Procrustes analysis is often used to estimate the affine trans-
formation between two groups of data. More specifically, it
calculates the direct solution for least-square optimization
via singular value decomposition (SVD). Our implementa-
tion of the algorithm is shown below Algorithm 1:

Algorithm 1: Procrustes Analysis for Deformation
Graph Estimation

Input: source node v0
s , neighbouring graph nodes

{vk
s | k = 0, · · · ,K − 1}, corresponding

frame nodes {vk
p | k = 0, · · · ,K − 1}

Output: SE(3) transformation Tp for v0
s

ts ← 1
KΣK

k=1v
k
s

tp ← 1
KΣK

k=1v
k
p

Xs = {vk
s − ts | k = 0, · · · ,K − 1}

Xp = {vk
p − tp | k = 0, · · · ,K − 1}

U,S,VT = SV D(XsX
T
p )

R = UVT

if det(R) = −1 then
multiply last row of R by −1

end
return (R , Xp −Xs)

S.1.3. Selective graph nodes assignment
The details for our graph nodes assignment process for each
source point are demonstrated in Alg. 2:

S.1.4. Training losses
The loss for training transformers Φ and ΦR consists of
registration loss, node regression loss and local rigidity con-
straint:

Ltotal = ΣM
m=1α

M−m(Lm
reg+λnodeLm

node+λrigidLm
rigid), (S1)

where λnode and λrigid are weight coefficients. In our experi-
ments, we set them to 1.0 and 0.1, respectively.

The registration loss penalizes the L1 distance between
predicted and ground truth positions:

Lm
reg = ΣTw

i=1∥X̂
i,m
p −Xi

p∥1, (S2)

Algorithm 2: Adaptive Nearest-neighbor Sampling
Input: source nodes Vs, frame nodes

V = {Vi | i = 1, · · · , T}, query node vq ,
rigidity threshold ϵ, minimal neighbor count
Kmin

Output: valid query node neighbors Vout

K ← Kmin

while true do
I← GetNeighborIndices(Vs,vq,K)
Vout ← FindAssignmentSet(Vs,V, I, ϵ)
Kvalid ← GetCount(Vout)
if Kvalid ≥ Kmin then
else

ϵ← ϵ+ 0.1
K ←Min(K + 1, GetCount(Vs))

end
end
return Vout

where X̂i,m
p is the predicted point position for the i-th

frame at m-th iteration, and Xi
p denotes the correspond-

ing ground truth. The registration loss give the supervision
for the all skinned points, where the gradients indirectly
back-propagated to the graph nodes and radii. However, in
order to give the direct constrains on graph nodes, the node
trajectories loss is defined similarly as:

Lm
node = ΣTw

i=1∥V̂
i,m
p −Vi

p∥1, (S3)

where V̂i,m
p and Vi

p denote predicted node graph positions,
and their corresponding ground truth values. To further
regularize node trajectory prediction and improve spatial
awareness while allowing the freedom of large deformations,
we utilize a local rigidity loss, which is defined as:

Lm
rigid = ΣTw

i=1∥T̂
i,m(N̂s(Vs))− N̂s(V

i,m
p )∥1, (S4)

where T̂i,m(·) denotes predicted transformations from
source nodes to target frames, N̂s(Vs) is the set of neighbors
for source nodes, and N̂s(V

i,m
p ) represents the correspond-

ing node predictions.

S.2. Additional Results
S.2.1. More comparisons with registration methods
We show additional comparisons with baselines TCSR [1]
and SyNoRim [3] on the D-FAUST depth-projected dataset.
It’s worth noting that TCSR takes around 8 hours to opti-
mize per sequence, while SyNoRiM performs registration
based on input pairs. In contrast, we perform feed-forward
registration directly on sequential inputs without any fur-
ther optimization. To ensure fair comparison, we separately



trained 9 models on all testing sequences in D-FAUST for
TCSR, with each one being trained for 200,000 iterations.
The results in Tab. S1 show that our method achieves state-
of-the-art performance across all metrics, while being fast
and efficient.

Table S1. Additional Baselines. The results are evaluated on
depth-projected D-FAUST test set with 50 frames per sequence.
Average trajectory error ATE3D , inlier proportions δ0.01 and δ0.05
are reported.

Method ATE3D ↓ δ0.01 ↑ δ0.05 ↑
SyNoRiM 0.128 0.003 0.095
TCSR 0.074 0.115 0.518
Ours 0.013 0.264 0.877

S.2.2. Surface reconstruction methods
We conduct additional experiments by comparing our
method with dynamic surface reconstruction methods in-
cluding CaDeX [4], OFlow [8] and LPDC [9]. Quantitative
results are shown in Tab. S2. The results show that our
method achieves state-of-the-art performance across all met-
rics.

Table S2. Comparison with CaDeX, OFlow and LPDC. The
evaluation is done on the test subsets of DT4D-A and D-FAUST.
For each of the test sets, we follow OFlow and CaDeX to perform
separate tests on unseen motions (UM) and unseen individual (UI)
sequences. The evaluated metric is correspondence L2 error, which
is consistent with ATE3D .

Method DT4D-A D-FAUST

UM UI UM UI

OFlow 0.204 0.285 0.094 0.117
LPDC 0.162 0.262 0.080 0.098
CaDeX 0.133 0.239 0.070 0.087
Ours 0.073 0.086 0.067 0.067

S.2.3. Comparison using pair-wise input
Although we focus on registering sequential inputs rather
than pair-wise registration, we additionally compare our
method against pair-wise registration methods [5–7]. Results
in Tab. S3 show that our method out-performs pair-wise
registration baselines even in their original settings.

S.2.4. Comparison on DT4D-H partial dataset
In addition to DT4D-A dataset which we use for evaluation
in the main paper, we conduct experiments on the DT4D-H
partial subset as well. Results in Tab. S4 demonstrate our
advantage over all baselines.

Table S3. Pair-wise comparison. The results are evaluated on
depth-projected DT4D-H test set with 2 frames per sequence. Aver-
age trajectory error ATE3D , inlier proportions δ0.01 and δ0.05 are
reported.

Method ATE3D ↓ δ0.01 ↑ δ0.05 ↑
NSFP 0.111 0.040 0.244
NICP 0.082 0.075 0.297
NDP 0.100 0.028 0.280
Ours 0.058 0.158 0.556

Table S4. Partial DT4D-H. The results are evaluated on depth-
projected DT4D-H test set with 50 frames per sequence. Average
trajectory error ATE3D , inlier proportions δ0.01 and δ0.05 are
reported.

Method ATE3D ↓ δ0.01 ↑ δ0.05 ↑
C-NSFP 0.112 0.012 0.163
C-NICP 0.102 0.037 0.178
C-NDP 0.102 0.011 0.194
Ours 0.049 0.152 0.575

S.2.5. Robustness to noise
Our model is trained on noisy inputs with noise standard
deviation σnoise = 10−5. To evaluate the robustness of our
method, we test it on different levels of noisy inputs, as
shown in Tab. S5. The results show that our model performs
with little accuracy decrease even when under large amount
of noise with σnoise = 0.01. The robustness owes to our
iterative spatial-temporal transformer, which filters out the
inconsistency in noisy inputs.

Table S5. Different noise levels. The results are evaluated on
uniform D-FAUST test set with 24 frames per sequence. Average
trajectory error ATE3D , inlier proportions δ0.01 and δ0.05 are
reported for noised inputs with different standard deviation σnoise.
Point input before applying noise is within unit cube.

σnoise ATE3D ↓ δ0.01 ↑ δ0.05 ↑
0.0 0.011 0.417 0.916
1.0× 10−5 0.011 0.416 0.918
1.0× 10−4 0.012 0.414 0.915
1.0× 10−3 0.012 0.413 0.915
1.0× 10−2 0.012 0.330 0.917
1.0× 10−1 0.095 0.001 0.067

S.2.6. Effectiveness of spatio-temporal refinement
The spatio-temporal refinement stage utilizes interleaving
spatial and temporal attention, which aggregates structural
and dynamic information to ensure consistency among



frames and nodes. This is especially crucial for noisy and
partial inputs where registration cannot be correctly and con-
sistently performed with only a single frame. To further
show the effectiveness of temporal refinement, we replace
the temporal attention layers with the same number of spatial
attention layers, and evaluate the model’s performance after
fine-tuning the new variant (Ours-SA). The results shown
in Tab. S6 prove that our temporal refinement is crucial for
yielding temporally consistent results, which is absent in
most prior registration works.

Table S6. Variations. The results are evaluated on depth-projected
D-FAUST test set with 24 frames per sequence. Average trajec-
tory error ATE3D , inlier proportions δ0.01 and δ0.05 are reported.
Ours-SA replaces temporal attention with spatial attention.

Method ATE3D ↓ δ0.01 ↑ δ0.05 ↑
Ours 0.013 0.264 0.877
Ours-SA 0.029 0.042 0.742

S.2.7. Effectiveness of node selection
Our adaptive node selection method follows SurfelWarp [2]
and utilizes the nearest neighbor as reference. We found in
our experiments that this assumption achieves robust node
selection with little noticeable errors. We show an example
of its selective effect in Fig. S1.

Figure S1. Node selection. Two cases demonstrating the effective-
ness of our node selection algorithm. Red lines indicate pairs of
source points and their corresponding nodes. Without node selec-
tion, nodes near source points might be incorrectly assigned.
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