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In this supplementary material, we provide further de-
tails of the method and results. Specifically, in Sec. 1, we
introduce the concepts and rendering preocess of 3D Se-
mantic Gaussian Splatting. Sec. 2 introduces the details
on frustum-based sampling methods used in constructing
Anisotropic 3D Gaussian Chebyshev descriptors. Sec.3
provides additional ablation studies on the ScanNet and
Replica datasets. Sec.4 reports open vocabulary segmen-
tation results on the LERF-Mask dataset. Sec. 5 dis-
plays more experimental setups and parameter configura-
tions across our used datasets. Sec. 6 shows results on a
per-scene basis for the Replica and ScanNet datasets.

1. Preliminaries on 3D Semantic Gaussian
Splatting

In 3D Gaussian Splatting (3DGS) [6], the scene is modeled
as a collection of anisotropic 3D Gaussians. Each Gaussian
is parameterized by a center µ ∈ R3, an anisotropic co-
variance matrix Σ ∈ R3×3, a color vector c ∈ R3, and an
opacity value α ∈ [0, 1]. To ensure that Σ remains positive
semi-definite during optimization, it is factorized as:

Σ = RSS⊤ R⊤, (1)

where R ∈ R3×3 is a rotation matrix (often represented
by a unit quaternion) and S ∈ R3×3 is a diagonal scaling
matrix whose entries describe the standard deviations along
the principal axes. The density function of a Gaussian at a
point x ∈ R3 is then given by

G(x) = exp(− 1
2 (x− µ)⊤Σ−1(x− µ)). (2)

For rendering, the Gaussians are projected onto the image
plane. Given a camera projection matrix P and an approxi-
mated Jacobian J ∈ R2×3 at µ, the projected covariance is
computed as:

Σ′ = JΣJ⊤, (3)

and the projected center as µ′ = P[µ⊤, 1]⊤. The color of
a pixel at position u is then obtained by alpha blending the
contributions of all Gaussians sorted along the ray:

C(u) =

N∑
i=1

ci αi Ti, Ti =

i−1∏
j=1

(1− αj), (4)

where N is the number of Gaussians affecting the pixel. To
enhance scene understanding and support downstream tasks
such as semantic segmentation, recent works [4, 11, 13–15]
propose augmenting each 3D Gaussian with an additional
semantic feature vector f ∈ RD, leading to an extended
parameter set:

Θ = {µ, R, S, α, c, f}. (5)

The rendered semantic feature map is computed analo-
gously to color blending:

Fs(u) =

N∑
i=1

fi αi Ti, (6)

with Ti defined as above. The rendered feature Fs(u) is
then supervised through feature distillation methods [15],
direct pixel-wise 2D supervision [13, 14], or contrastive
learning with 2D segmentation masks [4].

2. Frustum-Based Sampling for Anisotropic
3D Gaussian Chebyshev Descriptors

To reduce computational load and ensure that subsequent
local shape encoding is guided by view-specific semantic
cues, we restrict the processing spatial domain to the cam-
era’s current viewing frustum. Let the camera be charac-
terised by its position o ∈ R3, orientation matrix Rcam ∈
SO(3) (with the view axis defined as vcam = Rcamez ,
where ez = [0, 0, 1]⊤), field-of-view angle θ, and near/far
distances dmin and dmax. For any point p ∈ R3, set

1



Task Segmentation (IoU) Rendering (PSNR)

Scene Feature 3DGS [15] Semantic Gaussians [5] Ours Feature 3DGS [15] Semantic Gaussians [5] Ours

scene0050 02 46.2 47.1 50.4 25.47 25.50 25.98
scene0144 01 67.7 72.0 73.9 27.95 27.91 28.31
scene0221 01 57.1 56.9 60.1 29.26 29.19 29.42
scene0300 01 58.1 60.7 62.7 25.45 25.34 25.96
scene0354 00 52.3 55.2 58.3 26.93 26.94 27.45
scene0389 00 55.0 57.9 61.2 28.12 28.08 28.67
scene0423 02 65.4 69.7 72.6 29.57 29.53 29.91
scene0427 00 68.9 71.5 74.0 28.68 28.53 28.83
scene0494 00 65.0 67.2 71.6 29.19 29.16 29.45
scene0616 00 57.8 57.0 61.8 19.04 18.92 19.66
scene0645 02 52.2 54.7 58.9 22.80 22.82 23.31
scene0693 00 68.2 71.8 75.2 31.25 31.20 31.44

Mean 59.5 61.8 65.1 26.98 26.93 27.37

Table 1. Detailed Results by Scene on the ScanNet Dataset.

Task Segmentation (IoU) Rendering (PSNR)

Method Feature3DGS [15] Ours Feature3DGS [15] Ours

room0 82.0 84.2 35.18 35.57
room1 74.7 78.1 37.97 38.21
office3 82.3 84.5 37.74 38.07
office4 73.4 77.7 33.92 34.47

Mean 78.1 81.1 36.20 36.58

Table 2. Detailed Results by Scene on the Replica Dataset.

Method mIoU OA PSNR FPS

baseline 59.2 75.1 26.98 143

Ours (LEM w/o AGCD) 60.8 76.4 27.10 159
Ours (LEM w/o TLE) 63.1 78.3 27.29 179
Ours (AGP w/o SG) 64.0 79.3 27.37 149
Ours (AGP w/o AD) 62.9 77.8 26.93 196
Ours (ASHP w/o SG) 64.2 79.3 27.39 155

Ours 64.3 79.7 27.41 184
Ours (w/ CSKT) 65.1 80.5 27.46 191

Table 3. Ablation study results on the ScanNet dataset.

v = p − o. The point p lies inside the view frustum if
dmin ≤ ∥v∥ ≤ dmax and ∠(v, vcam) ≤ θ/2 (equivalently,

v·vcam
∥v∥ ∥vcam∥ ≥ cos θ

2 ).
Alternatively, if the frustum is given by plane normals

{nk}Kk=1 with offsets dk, the condition becomes n⊤kp+dk ≥
0, ∀k. Discarding the points that violate these tests yields
the clipped set P . We then perform iterative farthest-point
sampling to obtain a representative centre set C.

For each centre c(i), we define its local neighbourhood
as N(c(i)) = { p ∈ P | ∥p − c(i)∥ ≤ r}, where r > 0 is a
preset locality radius (independent of dmin /max).

Method mIoU OA PSNR FPS

baseline 78.2 94.3 37.01 148

Ours (LEM w/o AGCD) 78.6 94.8 37.13 163
Ours (LEM w/o TLE) 80.1 95.3 37.28 186
Ours (AGP w/o SG) 80.8 95.8 37.32 153
Ours (AGP w/o AD) 79.8 95.0 36.92 195
Ours (ASHP w/o SG) 80.9 95.8 37.29 158

Ours 81.1 96.1 37.38 189

Table 4. Ablation study results on the Replica dataset.

Method mIoU mBIoU

DEVA [3] 52.43 49.47
LERF [7] 37.17 29.30
SA3D [1] 24.93 23.33
LangSplat [10] 57.57 53.60
Gaussian Grouping [9] 72.80 67.57

Ours 75.67 71.81

Table 5. Results of Segmentation on the LERF-Mask Dataset su-
pervised by SAM.

3. Additional Ablation Results on ScanNet and
Replica Datasets

This section reports additional ablation results on both the
ScanNet and Replica datasets, as shown in Tables 3 and 4.
The experiments include baseline comparisons and variants
with individual modules removed. The results are con-
sistent with those observed on the Deep Blending dataset:
AGCD contributes significantly to semantic performance
(mIoU, OA), while AGP and ASHP with semantic guidance



improve rendering efficiency (FPS), with almost no loss in
PSNR.

4. Open Vocabulary Segmentation on LERF-
Mask Dataset

In this section, we further evaluate our method on the
LERF-Mask dataset [13], which provides accurate pixel-
level masks for three open-world scenes (figurines, ramen,
teatime) originally from the LERF-Localization bench-
mark [7]. Following Gaussian Grouping [13], we super-
vise the semantic identity embeddings using SAM masks
selected by Grounding DINO [9] with language prompts.
As shown in Table 5, our method surpasses existing meth-
ods in both mIoU and mBIoU, validating our segmentation
improvements.

5. Additional Experimental Details Across
Datasets

This section offers more experimental setups for three
datasets, including dataset configurations, optimizer set-
tings, and hyperparameters.

The Replica Dataset: Following the experimental setup
with previous [8, 15], we select four scenes: room 0, room
1, office 3, and office 4. For each scene, a trajectory gener-
ates eighty images, from which every eighth image starting
with the third is chosen for experiments, and class = 7 for
the mIoU metric. Same with [15], for room 1, the last 2
test images are excluded from the results since these im-
ages do not have 7 classes in the image. Optimization is
performed using the Adam optimizer with a learning rate of
0.001 over 5000 iterations. In the anisotropic 3D Gaussian
Chebyshev descriptor configuration, the maximum order of
Chebyshev polynomials (D) is set to 4, the number of rota-
tion angle sets (J) is 10, and the eigen-decomposition uses
K = 5. The binarization threshold (τ ) for Gaussian Prun-
ing and Spherical Harmonics is set at 0.1.

The Deep Blending: Due to the broad variety of classes
for open-vocabulary tasks in this dataset, we follow the set-
ting of [12], which maps classes to 21 classes from the
COCO dataset. Optimization is conducted using the Adam
optimizer with a learning rate of 0.001, across 13,000 itera-
tions. The D is set to 6, with 10 rotation angle sets (J), and
K = 8. The τ is set at 0.1.

The ScanNet dataset: We conducted experiments on
both open-vocabulary and closed-set segmentation. The
supervision for open-vocabulary segmentation follows the
same method as used with the Replica dataset, and maps the
ScanNet classes into 21 classes from the COCO dataset. For
closed-set segmentation, we used pseudo labels with cross-
entropy loss for supervision, the same as the approach in
[12], which employs 2D segmentation masks generated by
Mask2Former [2]. During the assessment phase, evaluation

metrics were calculated using real ground truth labels. Op-
timization is carried out using the Adam optimizer with a
learning rate of 0.001 over 13,000 iterations (8,000 when
CSKT is enabled). Given ScanNet’s complex shapes and
local structures, the maximum order of Chebyshev polyno-
mials (D) is set to 6, the number of rotation angle sets (J) is
15, and the eigen-decomposition uses K = 10. These set-
tings impact the descriptor’s dimensionality and sensitivity
to directions. The τ is set at 0.08.

We limit AGCD computations only during training
within frustum regions, with no extra cost at inference
time. The CSKT module reduces training iterations
(e.g., ScanNet from 13k to 8k), offsetting the higher per-
iteration cost (∼1.3×), ultimately decreasing total train-
ing time by 25%. The original 3DGS baselines achieved
26.58 PSNR (ScanNet) and 35.97 (Replica). Using AGP
and ASHP, our method reduces the model size: Replica
(204.5→48.2 MB), ScanNet (484.7→86.4 MB), Deep
Blending (1601.3→154.9 MB).

6. Detailed Per-Scene Results for Replica and
ScanNet Datasets

In this section, we present detailed results of our method’s
performance on a per-scene basis for both the Replica and
ScanNet datasets, as shown in Table 1 and Table 2. Our
method outperforms competing approaches across almost
all scenes.
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