Progressive Distribution Bridging: Unsupervised Adaptation
for Large-scale Pre-trained Models via Adaptive Auxiliary Data

Supplementary Material

A. More Discussions

A.1. Fairness Considerations for PDB vs. UDA

As formulated in Sec. 3.1, both UDA methods and our
proposed PDB utilize auxiliary datasets to facilitate model
adaptation to the unlabeled target domain. However, UDA
employs static labeled source domains, whereas PDB adap-
tively constructs auxiliary datasets tailored to the target
domain through sophisticated retrieval algorithms from
LAION-400M. Evidently, they inherently share similarities
and differences at the data level, necessitating further dis-
cussion regarding “fair comparison” or “effectiveness vali-
dation”. We now discuss this issue progressively from basic
to advanced perspectives.

Is there an inherent advantage in sampling data from
the extensive LAION-400M compared to utilize UDA
source domains? No, there is no “inherent” advantage. Us-
ing LAION-400M is more challenging than UDA’s source
domains. UDA’s source domains are typically well-curated,
labeled, and closed-set, while LAION-400M is assumption-
free, weakly labeled, and noisy. Despite the increased dif-
ficulty, PDB overcomes the challenges and creates advan-
tages, even besting annotation-reliant UDA on OfficeHome
and VisDA. PDB demonstrates the potential of constructing
adaptive auxiliary data in the current era of large pre-trained
models and large-scale datasets.

Why does PDB achieve superior performance com-
pared to UDA on OfficeHome and VisDA, while failing
to demonstrate advantages on DomainNet? This is be-
cause annotations play a more significant role on more chal-
lenging datasets. DomainNet is considerably more difficult
than OfficeHome/VisDA, thus UDA possesses a natural ad-
vantage over annotation-free paradigms like UFT/PDB.

Why not align the auxiliary data budgets between
UDA and PDB for a “fair” comparison? This is related to
performance saturation. As shown in Tab. 8, PDB employs
more auxiliary samples than UDA on Office-Home, fewer
on DomainNet, and markedly fewer on average across all
benchmarks. At this point, one might argue that PDB’s ad-
vantage on OfficeHome stems from using more auxiliary
data. However, examining the VisDA results reveals this
is not the case. Compared to UDA, PDB achieves better
performance on VisDA while using significantly less auxil-
iary data. For this intricate and complex issue, we believe
the first aspect to question is: is UDA’s auxiliary data bud-
get the most reasonable? Obviously, the answer is nega-
tive. Using such a massive amount of auxiliary data but

with significant domain gaps on VisDA, which has only 12
categories, yields minimal benefits. Therefore, we did not
align PDB’s budget with UDA’s, but instead set a budget of
Npaz = 100 per class based on PDB’s performance satu-
ration phenomenon and hyperparameter consistency.

A.2. Differences Between PDB and Active DA

Active DA selects ambiguous and representative samples
from the target domain for annotation, in addition to using
labeled source data. Its goal is to maximize target domain
performance under a fixed annotation budget. Our work ad-
dresses the limitations of UFT and UDA in the context of
VLMs, focusing on constructing a more suitable “source”
domain from large-scale datasets. Key differences include:
(1) Our setting is annotation-free and has no oracle access.
(2) Our sample pool’s label space is open. (3) Our sample
pool includes a wide range of styles. We propose seman-
tic filters for the first two challenges, the style controller for
the third. While both Active DA and our method involve
“sample selection”, they differ significantly in terms of mo-
tivations, selection criteria, and encountered challenges.

A.3. Differences Between PDB and REACT/RA-
CLIP

Our work focuses on UFT/UDA’s intrinsic limitations for
VLM *“adaptation”; REACT [52], in contrast, operates be-
fore such “adaptation” (see REACT’s Introduction). RE-
ACT is like continual pre-training for specific domains. RE-
ACT lacks adaptivity, retrieving the same data for domains
of different styles. In contrast, PDB constructs adaptive
and progressive data streams. Besides, REACT’s training
is costly (10k samples/class, contrastive loss), whereas our
semantic filters enable data efficiency and more direct su-
pervision (0.1k samples/class, CE loss). On the other hand,
RA-CLIP [84] enables models to enhance zero-shot perfor-
mance via test-time knowledge retrieval. Conversely, PDB
relies on no external knowledge at test time, aiming to push
performance to its limits for a specific scenario.

B. More Results
B.1. Ablation Study on Training Loss

We evaluate the effectiveness of GCE loss on DomainNet,
as shown in Tab. A3. For domains Q and C, which have poor
initial performance, GCE loss demonstrates better robust-
ness. However, for domain R with high initial performance,
standard CE loss performs slightly better. We attribute this

| -Ar —=Cl —Pr —Rw | Avg
CLIP [63] 829 678 890 89.8 | 824
POUF-FT[74] | 844 738 927 917 | 857

PDB-TO 87.3 76.9 92.9 91.5 87.2
PDB 87.9 78.1 93.2 92.1 87.8

Table Al. Performance comparison between our strong baseline
(PDB-TO) and our full method (PDB). Ar, Cl, Pr and Rw are do-
mains in OfficeHome [77]. In “PDB-TO”, the model is adapted
with only target domain optimization.

| 2C =1 =P —5Q —R =S | Avg
CLIP [63] 70.1 464 61.7 137 829 62.6 | 56.2
POUF-FT [74] | 73.8 55.7 686 188 84.6 664 | 61.3

PDB-TO 750 54.6 71.1 209 847 670 | 622
PDB 759 552 716 228 855 67.6 | 63.1

Table A2. Performance comparison between our strong baseline
(PDB-TO) and our full method (PDB) on DomainNet [61].

to the fact that the performance of semantic filters partially
depends on initial performance. Thus, applying semantic
filters on domains with poor initial performance introduces
more noisy samples, which requires more robust adaptation
process.

On the other hand, Tabs. A1 and A2 present the perfor-
mance comparison between our strong baseline (PDB-TO)
and full method (PDB). For reference, we also include the
results of POUF [74]. As shown in the tables, our PDB-TO
outperforms the UFT method POUF by margins of 1.5%
and 0.9% on OfficeHome [77] and DomainNet [61], re-
spectively, which has demonstrated the effectiveness of our
lemaapeo (Eq. (7)). Furthermore, by incorporating our adap-
tive auxiliary datasets, PDB achieves additional gains of
0.6% and 0.9% over the strong baseline (PDB-TO).

| —Q —R —=C | Avg
CLIP [63] 13.7 82.9 70.1 55.6
PDB-SO w/ CE 18.1 85.3 74.0 59.1
PDB-SO 19.1 85.2 74.8 59.7

Table A3. Ablation study on source domain training loss. Q, R
and C are domains in DomainNet [61]. In “PDB-SO w/ CE”, we
replace the GCE loss with the standard CE loss.

B.2. Analysis of Retrieval Size

Tab. A4 analyzes PDB’s scalability with respect to the num-
ber of retrieved samples. Our experiments demonstrate that
retrieving a set of 20 samples per class is sufficient to obtain
significant performance improvements relative to PDB-TO.
Furthermore, while increasing samples per class from 20 to
300 provides slight performance gains. The observed sat-
uration in performance is consistent with findings reported

in other few-shot learning methods (e.g., CoOp). We opt
for Nyq = 100 as our default setting to maintain a good
balance between performance and efficiency.

On the other hand, our method requires significantly
fewer samples compared to REACT [52], which requires
at least 3000 samples per class on ImageNet-1K [13]
to achieve significant improvements. We attribute this
advantage to our well designed cascaded semantic fil-
ters (Sec. 4.1) and the adoption of pseudo-label training
loss (Sec. 4.3), where the latter provides more direct su-
pervision compared to image-text contrastive training [52].
It is worth noting that our performance gains are measured
against the stronger baseline (PDB-TO), not CLIP zero-shot
inference.

‘ Retrieval Size ‘ —Q —R —C ‘ avg

CLIP [63] | 0 | 1370 8290 70.10 | 55.60
PDB-TO | 0 | 2085 8473 7501 | 60.20
20x345 2278 8522 7564 | 6111

PDB 100x3451 | 2282 8551 7586 | 61.40
200345 2290 8546 76.05 | 61.47

300345 2313 8545 7591 | 6149

Table A4. Performance scaling of PDB with respect to the number
of retrieved samples. denotes our default experimental setting,
i.e. Nmaz = 100. In “PDB-TO”, the model is adapted with only
target domain optimization.

C. More Visualization
C.1. Analysis of CLIP-based Retrieval Algorithm

As shown in Fig. A1, we present the visualization results of
four different basic retrieval algorithms (T2T, I2T, T2I and
12I). We randomly sampled 20 instances each from the re-
trieval results of “alarm clock”, “axe” and “hammer”, where
instances with top 100 matching similarity are recalled. As
illustrated in Fig. Al(a) and (b), retrieval based on match-
ing caption in the image-text pairs, i.e. T2T and 12T, recalls
almost no useful samples, which is consistent with the ar-
guments presented in the main paper (Sec. 3.2). For T2I
retrieval, limited by imperfect image-text alignment from
pre-training, only succeeds in retrieving a small number of
correct samples for “alarm clock”. Additionally, although
121 effectively identifies “alarm clock™ through image simi-
larity matching, it still fails to handle categories with lower
initial performance, such as “axe” and “hammer”.

C.2. Analysis of Cascaded Semantic Filters

While the effectiveness of each filter has been demonstrated
through quantitative experimental results in the main pa-
per, i.e. Tab. 5, we provide visualization here for more intu-
itive insights. As default, we follow the same visualization
strategy as described in the previous subsection (Sec. C.1).

alarm clock

axe

hammer
AR 7»4»

alarm clock san BANM ﬂ__@ ﬁ
o “" ‘n»‘

axe

hammer

alarm clock

axe

hammer

alarm clock

@0 0B85

= .
T%\%ﬁ%&-% ﬁ%

hammer

e
(©)
- %
b

ﬁwﬁwxw{

(@) 121

Figure A1. Visualization of results from four different basic CLIP-based retrieval algorithms (Sec. 3.2). All results comes from the Clipart

domain of Mini-DomainNet.

Fig. A2 presents examples from three categories - “axe”,
“hammer”, and “string bean” - selected from the Clipart do-
main of Mini-DomainNet. Note that “axe” and “hammer”
share are visually similar objects, and “string bean” exhibits
poor initial classification accuracy. A comparison between
Fig. Al (a) and Fig. A2 (a) demonstrates how Concept
Matching (CM) filter enhances vanilla T2T retrieval perfor-
mance by eliminating a substantial amount of noisy sam-
ples. Comparing Fig. A2 (a) and (b) shows that GMM ef-
fectively eliminates text-only images, e.g. results of “ham-

er”. Fig. A2 (c) demonstrates the effect of style controller
(Sec. 4.2). Finally, Fig. A2 (d) clearly shows that 121 re-
trieval fails to handle visually similar categories (“axe” and
“hammer”) and hard categories (“string bean”).

C.3. Class-wise Performance Curves

As stated in the main paper Sec. 4.1, we propose T2T re-
trieval as the base retrieval algorithm due to its superior
properties on visually similar and hard categories in unsu-
pervised adaptation. Here, we compare the performance of
PDB and PDB-TO on these specific categories to verify our
claims. As shown in Fig. A3, through three representative

categories - “axe”, “hammer”, and “string bean” - PDB con-
sistently achieves significantly better final results than PDB-
TO. Besides, these results also confirm that auxiliary data is
essential when dealing with poor initial performance.

C.4. Dealing with Textual Ambiguity

As shown in the Fig. A4, we present retrieval results for the
ambiguous category “Marker”. This word can refer to both
road sign/milestone” and ’writing marker/pen”, with these
meanings being significantly different from each other. We
mitigate the ambiguity issue by incorporating minimal vi-
sual information (o = 0.1) into the concept prototypes.

D. Implementation Details
D.1. LoRA Fine-tuning

Drawing inspiration from recent studies [0, 15, 68], we uti-
lize LoRA [28] to adapt both the image and text encoders of
the CLIP [63] model for effective target domain adaptation.
In the Transformer [76] architecture, LoORA implements a
low-rank decomposition scheme Wy + AW = W, + BA
to constrain the updates of pre-trained linear layer weights

axe

hammer

string bean

axe

hammer

FARM FRES]]

string bean
GREEN BEANS'

axe %*x

hammer

BN
D5

‘-&3 E

string bean

(c) T2T + Style + CM (a:o.7)

v TN E/ @/ N AREA N

hammer

x,/’ﬁ*\/%\ §R~o-§'@§<@‘\"§%¢

string bean

oy —

Pl >—eRewa—- Y =maR | gFe/

(d) 121+ CM (a=1.0)

Figure A2.

Visualization of retrieval results using different semantic filters. “CM” denotes Concept Matching Filter (Sec. 4.1). “GMM”

denotes heuristic GMM-based filter (Sec. 4.1). “Style” denotes Style Filter (Sec. 4.2). All results comes from the Clipart domain of Mini-

DomainNet.

DomainNet ->Q, "axe"

DomainNet ->Q, "hammer"

DomainNet ->Q, "string bean"

|5 = PDB |-« PDB 30] —* PDB
—+— PDB-TO . 244 =+~ PDB-TO —+— PDB-TO .
4 . 4
! |
01, 16 201 o
4 i B .
54 8 10 4
0 T T T T y 0 v T T T 0 T T T T
0 2500 5000 7500 0 2500 5000 7500 0 2500 5000 7500
Iteration Iteration Iteration
(a) (b) (©)

Figure A3. Performance curves of specific categories, i.e. “axe”, “hammer” and “string bean”. Note that the former two constitute visually
similar classes, while the latter represents a hard class. In “PDB-TO”, the model is adapted with only target domain optimization.

Wy € R™*™. The residual weights are represented by ma-
trices B € R™*" and A € R"*™, where the rank r is much
smaller than min(m,n). The training process keeps the
base weight matrix W, fixed, with optimization performed
exclusively on residual matrices A and B. Following the
original LoRA [28] paper, we initialize these matrices ac-

cordingly and equate the scaling factor o with rank . Our
implementation sets » = 8 and only apply LoRA [28] to
the self-attention modules, specifically the query (W,) and
value (IW,) weight matrices. For model inference, the resid-
ual weights A and B are merged into W.

Figure A4. Visualization of retrieval results with ambiguous class name. The results comes from the Clipart domain of OfficeHome [77]
and the class name is “Marker”. For both (a) and (b), we employ the same experimental configuration except the value of a: “T2T + Style
+ CM + GMM”.

Algorithm 1: Our Retrieval Algorithm

Input: Image encoder f, text encoder g and j-th class name ¢;. Unlabeled target data D' = {xﬁ}i\]:tl and large-scale
image-text pairs D = {(x;,¢;)}¥,. o € {0.1,0.4,0.7}.
Output: Auxiliary dataset Dia of j-th category with specific a.

1 Perform T2T Retrieval via pre-built 16GB KNN index: DY = {(x;, ¢;)| Top-K(x, c;)epatt g(t))Tg(ci)}.
2 Get stylized queries Q**¥'¢ for all categories via Eq. (6), and perform Style Filter:

DSty {(xi, ¢;)| Top- K(xz,cz)EDD f(XZ>Tthyle}
3 Perform Concept Matching Filter with stylized queries: D}’a ={(xi,¢;) € DSty|5 (f(x)TQte) > 4}

4 if o = 0.1 then

5 Performing GMM clustering in Eq. (4) and filter out text-only images via GMM filter:
D3, = {(xi,¢:) € D} ,|f(x:) € Ci}.

6 else

7 | Pja=Dia

2
8 return D7 ,

D.2. Retrieval Algorithm

To demonstrate our retrieval algorithm with greater rigor,
we present its pseudocode implementation in Algorithm 1.

	Introduction
	Related Work
	Unsupervised Fine-tuning
	Unsupervised Domain Adaptation
	Learning with Retrieved Data
	Preliminary
	Problem Formulation
	Analysis of CLIP-based Retrieval
	Method
	Cascaded Semantic Filters
	Style Controller
	Overall Training Objective
	Experiments
	Setup
	Main Results
	Analysis

	Conclusion

	More Discussions
	Fairness Considerations for PDB vs. UDA
	Differences Between PDB and Active DA
	Differences Between PDB and REACT/RA-CLIP

	More Results
	Ablation Study on Training Loss
	Analysis of Retrieval Size
	More Visualization
	Analysis of CLIP-based Retrieval Algorithm
	Analysis of Cascaded Semantic Filters
	Class-wise Performance Curves
	Dealing with Textual Ambiguity
	Implementation Details
	LoRA Fine-tuning
	Retrieval Algorithm

