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A. Experimental Details
Backbone. We employ the ViT-L-14-336 backbone from
the Open-CLIP implementation, resizing all images to a res-
olution of 518 × 518 prior to processing. All experiments
are conducted on a single NVIDIA GeForce RTX 3090.
Text Prompt Branch. For the text prompt branch, we adopt
the text template from April-GAN [2] and simplify it by re-
placing class names with the fixed terms “object” and “tex-
ture”. We train using the Adam optimizer with a fixed learn-
ing rate of 0.005 for 5 epochs at a batch size of 16, and set
the softmax temperature to 0.05. Features from the 12th,
16th, 20th, and 24th layers of the backbone—rich in seman-
tic information—are utilized in this branch. When training
on MVTec AD, we concatenate four images from the same
category with a 20% probability to generate composite im-
ages that simulate multi-instance scenarios (as in April-
GAN [2]). Additionally, images from the defect categories
“misplaced” and “missing cable” are discarded, since these
often contain large abnormal regions outside the object that
could mislead the model.
Patch-level Rarity Branch. In the patch-level rarity
branch, features are extracted from the 6th, 12th, 18th, and
24th layers. Multi-scale features are obtained via 1 × 1
and 3 × 3 neighborhood average pooling to enhance visual
representation. The rarity threshold X is set to 30%, and
the maximum number of historical images NI,max is fixed
at 200 by default. In the Direct Patch-level Rarity Branch
(DPRB), the sampling ratio α is set to 1

3 . In the Indirect
Patch-level Rarity Branch (IPRB), the patch feature mem-
ory bank size NF is set to 4107 (corresponding to the total
patch count of three images), K is fixed at 3 for K-NN, and
the loose degree Y is set to 1%.
Anomaly Detection. For pixel-level anomaly detection,
we fuse the refined anomaly maps Âtext and Ârare using
weights that vary with the time step t. Specifically, we set:

λtext = 1, λrare = 0, t = 1,

λtext =
2
3 , λrare =

2
3 , 1 < t ≤ 4,

λtext =
1
3 , λrare =

4
3 , t > 4,

(1)

which gradually increases the influence of the rarity branch
as more test images are processed. We maintain the con-
straint λtext + λrare/2 = 1 since the scale of Ârare is
roughly half that of Âtext. The combined anomaly map
is then upsampled to the original image resolution, and a
Gaussian filter with σ = 4 is applied to smooth the final
pixel-level result.

For image-level anomaly detection, we set the temper-

ature parameter τ = 0.005. The parameter B, which
is used in the Image-level Re-scoring operation, is incre-
mented by 1 every 20 tested images within the bounds of 0
and Bmax = 8.

B. Loose Similarity Details
In RareCLIP, the patch-image similarity of a test patch is es-
timated by multiplying the similarity between the test patch
and its nearest neighbor in the patch feature memory bank
MF with the neighbor’s patch-image similarity. Assuming
that both the test patch and its nearest neighbor are similar
to the same patch in a historical image, this estimation re-
duces to computing cos θAC as cos θAB · cos θBC , where
θAC ∈ [0, π) is the angle between vectors A and C. Given
the relation

|θAB−θBC | ≤ θAC ≤ min
(
θAB+θBC , 2π−θAB−θBC

)
,

we obtain the bound

cos(θAB + θBC) ≤ cos θAC ≤ cos(θAB − θBC).

Expanding further, the difference

cos θAC − cos θAB · cos θBC

lies within

[− sin θAB · sin θBC , sin θAB · sin θBC ] ,

yielding an error of ±
√
(1− cos2 θAB)(1− cos2 θBC).

This error decreases as either cos θAB or cos θBC ap-
proaches 1—that is, when the test patch and its near-
est neighbor (or the neighbor’s patch-image similarity) are
highly similar. In an industrial environment, normal patches
typically find similar counterparts in other images, whereas
abnormal patches do not. However, subtle differences
among normal patches and variations in other regions pre-
vent the similarities between normal patches from reaching
1, thereby gradually decreasing the estimated similarity of
these normal patches after multiple multiplicative estima-
tions. To address this, we loosen the requirement for sim-
ilarities to reach 1, which has been shown to significantly
boost RareCLIP’s performance.

C. Anomaly Detection Visualization Results
We show the visualization of pixel-level anomaly detection
results in Figure 1. Compared with other zero-shot meth-
ods [1–4, 7, 8], the proposed OnlineAD can better distin-
guish between normal regions and anomalous regions. For
example, RareCLIP can easily find fine-grained anomaly in
Cashew and component-missing anomaly in Pcb1.



Figure 1. Visualization of pixel-level anomaly detection results on the MVTec AD (top two rows) and VisA (bottom two rows) datasets.

NF
GPU
(MB)

Time
(ms)

MVTec AD VisA

I-AUC P-AUC I-AUC P-AUC

1369 4180 56.9 97.83 97.56 94.23 98.61
2738 4352 57.4 98.16 97.69 94.48 98.76
4107 4352 59.4 98.19 97.70 94.40 98.80
5476 4530 60.4 98.18 97.67 94.32 98.81
6845 4612 61.5 98.15 97.63 94.22 98.81

Table 1. Ablation study on the impact of different NF values on
the MVTec AD and VisA datasets. Here, NF is set as an integer
multiple of the patch number per image.

D. More Ablation Studies

Impact of Memory Size NF . Table. 1 presents ablation
study on the effect of varying NF . As NF increases, both
the memory and time costs rise, while detection perfor-
mance remains largely stable once NF ≥ 2738. This in-
dicates that a moderate NF can effectively reduce compu-
tational overhead without compromising performance.
Impact of K in KNN. Table. 2 shows the effect of varying
the K value in the K-NN search. The results indicate that
values of K that are either too low or too high lead to de-
creased performance, while a moderate K value yields the
best results.
Sampling Ratio α. The ablation study of sampling ratio α
in RareCLIP-d on VisA [9] dataset in Table. 3 shows that
α = 1/3 achieves the best trade-off between computational
costs and detection performance.
Hyperparameters in Anomaly Detection. As shown in
Table. 4, we conduct an ablation study on hyperparameters

K
MVTec AD VisA

I-AUC P-AUC I-AUC P-AUC

1 98.17 97.52 94.03 98.78
2 98.19 97.64 94.26 98.80
3 98.19 97.70 94.40 98.80
4 98.12 97.73 94.44 98.78
5 98.08 97.76 94.44 98.77
6 98.04 97.77 94.41 98.76

Table 2. Ablation study on the effect of different K in K-NN.

α GPU(MB) Time(ms) I-AUC P-AUC

1/5 5244 91.4 93.18 98.83
1/3 6018 106.2 93.55 98.86
1/2 6942 124.9 93.66 98.86
1 9712 181.3 93.68 98.86

Table 3. Ablation study on the effect of different sampling ratio α
in RareCLIP-d on the VisA dataset.

(λtext, λrare, B, τ ) in Section 3.3 Anomaly Detection. The
ablation results demonstrate that the performance is stable
across various combinations of those hyperparameters.

Component Ablation. A component ablation study of
RareCLIP is conducted in Table. 5 to show the impact of
each component.

Results on BTAD. We evaluate RareCLIP on BTAD[6]
without hyperparameter tuning and comparison results are
shown in Table. 6.



(λtext, λrare, B, τ ) MVTec AD VisA

I-AUC P-AUC I-AUC P-AUC

(1/2, 2/2, 8, 1/200) 98.24 97.44 94.51 98.75
(2/5, 6/5, 8, 1/200) 98.24 97.62 94.54 98.79
(1/3, 4/3, 2, 1/200) 98.17 97.70 94.00 98.80
(1/3, 4/3, 5, 1/200) 98.19 97.70 94.34 98.80
(1/3, 4/3, 8, 1/100) 97.83 97.70 94.29 98.80
(1/3, 4/3, 8, 1/300) 98.26 97.70 94.00 98.80
(1/3, 4/3, 8, 1/200)† 98.19 97.70 94.40 98.80

Table 4. Ablation study on hyperparameters (λtext, λrare, B, τ )
related to anomaly score. † represents default.

TPB IPRB IRB MVTec AD VisA

PSM SCS LS I-AUC P-AUC I-AUC P-AUC

✕ ✓ ✓ ✓ ✓ 96.79 97.15 92.43 98.30
✓ ✕ ✓ ✓ ✓ 96.28 97.29 91.26 98.56
✓ ✓ ✕ ✓ ✓ 97.18 93.17 87.80 88.46
✓ ✓ ✓ ✕ ✓ 97.00 96.75 93.24 98.32
✓ ✓ ✓ ✓ ✕ 97.98 96.70 93.88 98.63
✓ ✓ ✓ ✓ ✓ 98.19 97.70 94.40 98.80

Table 5. Component ablation study of RareCLIP.

Method Mode I-AUC P-AUC

AdaCLIP [1] offline 88.6 92.1
AnomalyCLIP [8] offline 89.1 93.3
RareCLIP offline 91.7 91.6

Musc* [4] online- 94.6 97.4
RareCLIP online 96.1 97.4

Table 6. Zero-shot results on the BTAD[6] dataset.

E. Online Few-shot Anomaly Detection

RareCLIP can be readily extended to the few-shot setting,
where a limited number (k = 1, 2, 4) of normal images
are available. Prior to testing, these k normal images are
processed in online mode. The number of normal patch
features Nk extracted from these k images is recorded in
the patch feature memory bank, and a minimum threshold
Nk,min is enforced. If Nk falls below Nk,min after applying
SCS, the current Nk features are retained. For each test im-
age, an additional anomaly map Afew ∈ RM is computed
based on these Nk normal patch features:

Afew = 1− LS
({

max
n∈[1,Nk]

⟨ftest, fn
M⟩

∣∣∣ ftest ∈ Ftest

})
,

(2)
where fn

M, n ∈ [1, Nk] denotes the n-th normal patch fea-
ture in the memory bank and LS is the Loose Similarity
operation to algin with IPRB. We then integrate Afew with

Arare using a weight parameter λk:

A∗
rare =

(
1− k

t−1

)
Arare + λk Afew

1− k
t−1 + λk

, (3)

where the testing time step t starts from k + 1. We set
Nk,min = k

4M and λk = k
8 for k = 1, 2, 4, with M denot-

ing the number of patches per image. A similar approach
is applied to the Image-level Rarity Branch, where the lo-
cally aggregated image-level features F laif

k from the k nor-
mal images are stored, and the maximum similarity between
F laif
test and F laif

k is computed to refine crare with λk.
Table. 7 presents the comparative results of RareCLIP

under different k-shot settings.

F. Limitations and Future Work
While RareCLIP achieves state-of-the-art performance in
online zero-shot AD, it currently supports online detection
only for a single category. This limitation restricts its di-
rect application in industrial scenarios where multiple ob-
ject categories must be monitored concurrently. In future
work, we plan to extend RareCLIP to handle multi-category
AD by exploring strategies such as shared and category-
specific memory banks and adaptive mechanisms for pro-
cessing diverse object types in a unified framework. In ad-
dition, further efforts will focus on reducing computational
overhead and enhancing robustness in more complex real-
world environments.
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