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Overview

This supplementary material consists of 7 sections that pro-
vide extended data and insights into the Neural Volumetric
Prior (NVP). First, detailed equations describing the ren-
dering process based on diffraction optics are provided. The
second section elaborates on the coherent alignment for pro-
cessing experimentally captured images. The third section
discusses the optical section of FDT using k-space analysis.
The fourth section specifies the loss functions. The fifth sec-
tion explains evaluation metrics used to design and optimize
NVP. The sixth section provides implementation details, in-
cluding the optimization of feature dimensions and network
layers. The seventh section presents an ablation study on
self-calibration.

Furthermore, four supplementary tables are included to
present extended results. Table 4 compares the reconstruc-
tion performance of various methods across different num-
bers of measurements, extending Table 2. Table 5 examines
the effect of feature dimensionality on NVP’s performance.
Table 6 evaluates the impact of network depth on NVP’s
performance. Table 7 provides an ablation study investigat-
ing the role of self-calibration for experimentally captured
data.

1. Multi-slice Model for Rendering Process

To accurately model light propagation through a 3D hetero-
geneous semi-transparent sample, the sample is represented
by multiple slices overlapping in the light propagation di-
rection, so called the ”multi-slice model”. To improve com-
putational efficiency, we extend the conventional multi-slice
model from classical optimization algorithms (i.e., FISTA)
[17] to the PyTorch framework. This differentiable model
allows automated backpropagation. It also incorporates a
coarse-to-fine strategy for adjusting parameters and fine-
tuning the RI.

In this model, the 3D phase object is represented as a
stack of Nz layers, each with an unknown RI, n̂k(r) for
k = 1, 2, ..., Nz , where:

n̂ ≜ {n̂k(r)}Nz

k=1 , r = (x, y), (4)

As light propagates through each layer, its phase is al-
tered according to the transmission function tk(r):

tk(r) = exp

(
j2π

λ
∆z(n̂k(r)− nb)

)
, (5)

where λ is the wavelength, ∆z is the layer thickness, and
nb is the background RI. The Fresnel propagation operator
P∆z represents light propagation through the layers:

P∆z{·} = F−1

exp

−j2π∆z

√(
1

λ

)2

− ||k||2

 · F{·}

 ,

(6)
where F{·} and F−1{·} are the Fourier transform and

its inverse. The electric field Êk,i(r) propagating through
the k-th layer for the i-th fluorescent source is:

Êk,i(r) = P∆z

{
tk(r) · Êk−1,i(r)

}
. (7)

At the image plane, the electric field is calculated by ap-
plying the pupil function p(k):

Êi(r) = F−1
{
p(k) · F

{
ÊNz,i(r)

}}
. (8)

For thick objects, the field is back-propagated over a dis-
tance ∆Zc before reaching the camera:

Êi(r) = F−1
{
p(k) · F

{
P−∆Zc

{
ÊNz,i(r)

}}}
. (9)

The camera detects the intensity of the light field as:

Îi(r) = |Êi(r)|2. (10)

2. Coherent Alignment
The multi-slice model allows us to generate synthetic im-
ages using rendering equations under the assumption that
the illumination source is coherent. Coherence implies that
all photons emitted from the source share the same fre-
quency and phase. However, in the experimental data cap-
tured by FDT, the light source (i.e., fluorescence) is partially
coherent, introducing model mismatching.

One approach to address this mismatch would be to
mathematically model [81] the partially coherent sources
to generate more accurate synthetic images. However, this
approach is impractical due to the inherent randomness and
spatially-variant distribution of fluorescence light.

To overcome this limitation, we propose a coherent
alignment method (Figure 8). The synthetic image Î (top
left), generated using coherent light sources, is adjusted to
match partial coherence by applying a coherent mask de-
rived from the diffraction pattern (top center). This results
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Figure 8. Illustration of the coherent alignment method to
address partial coherence in fluorescence-based illumination.
The top row shows the synthetic image Î (left) multiplied by the
coherent mask (center) to produce the masked synthetic image
Îmask (right). The bottom row depicts the real image I (left) under-
going the same masking process to generate the masked real image
Imask (right). This approach aligns the partially coherent fluores-
cence illumination with the coherent multi-slice model, mitigating
mismatches caused by variations in photon frequency and phase.

in the masked synthetic image Îmask (top right). A simi-
lar process is applied to the real observed image I (bot-
tom left), which undergoes masking with the same coher-
ent mask (bottom center) to produce the masked real image
Imask (bottom right). The loss is calculated between Imask
and Îmask instead of I and Î , which reduces model mis-
matches.

3. Missing cone problem.
NVP solves the missing cone problem by using fluores-
cence as a partially coherent light source for illumination.
It is well established that partially coherent light can solve
this issue [82]. We also provide the optical transfer func-
tion (OTF) of partially coherent illumination (Figure 9),
which indicates that it fills the missing cone compared to
traditional coherent illumination, thereby enabling optical
sectioning for 3D reconstruction.
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Figure 9. OTF under coherent (left) and partially coherent
(right) conditions.

4. Loss
The image reconstruction loss Limg is a weighted sum of
L1, L2, and Structural Similarity Index (SSIM) losses, en-

suring robustness to pixel-wise differences while preserving
perceptual quality. This loss is defined as:

Limg =
1

N

N∑
i=1

α∥Îi − Ii∥1 + β∥Îi − Ii∥22 + γ ℓSSIM(Îi, Ii),

(11)
where N is the number of images, Îi and Ii are the pre-
dicted and ground-truth images, and α, β, and γ are the
corresponding weights for each loss term.

Since the RI distribution in biological samples varies
gradually, total variation regularization is applied across
both the X-Y plane and the Z-axis to enforce smoothness
in the predicted 3D RI. This is formulated as:

Rri = λxy TVxy(n̂) + λz TVz(n̂), (12)

where TVxy(n̂) and TVz(n̂) represent the total variation for
predicted RI n̂ along the X-Y plane and Z-axis, respec-
tively. The weights λxy and λz control the strength of reg-
ularization in each direction, the α, β, γ = 4, 4, 1.5..

5. Metrics
We use three metrics to evaluate the quality of our 3D re-
constructions: SSIM, Learned Perceptual Image Patch Sim-
ilarity (LPIPS), and Peak Signal-to-Noise Ratio (PSNR).
These metrics provide a comprehensive evaluation: SSIM
for structural similarity, LPIPS for perceptual quality, and
PSNR for signal fidelity. For evaluation, we normalize te
image intensities to a range of 0 − 1, while preserving the
original reconstructed RI values, as they retain their real-
world physical significance.

5.1. SSIM
SSIM measures the similarity between two images in terms
of luminance, contrast, and structure, with values ranging
from 0 to 1 (higher is better). The SSIM between two im-
ages x and y is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(13)

where µx and µy are the means, σ2
x and σ2

y are the vari-
ances, and σxy is the covariance of x and y. C1 and C2 are
constants to stabilize the division.

5.2. LPIPS
LPIPS quantifies perceptual similarity by comparing high-
level feature representations from a pre-trained neural net-
work. Lower LPIPS values indicate greater similarity to the
ground truth:

LPIPS(x, y) =
∑
l

wl∥ϕl(x)− ϕl(y)∥2 (14)

where ϕl represents features extracted from layer l of the
neural network, and wl is a weight for layer l.



5.3. PSNR
PSNR measures the ratio between the maximum possible
signal power and the power of noise, with higher values in-
dicating better quality:

PSNR = 10 · log10
(

L2

MSE

)
(15)

where L is the maximum pixel value (1 for normalized im-
ages) and MSE is the mean squared error between the re-
constructed and ground truth images.

6. Implementation Details
In the main text, we compare explicit, triplane, and NVP
methods. All methods are tested under the same experimen-
tal settings, including identical input images, random seeds,
learning rates, and regularization methods.

For the explicit method, we directly adopt the parameter
configurations from [18], as it operates on predefined grids
without requiring neural network parameters. For the tri-
plane and NVP methods, both the feature dimension and
the neural network size must be experimentally determined.
Tables 5 and 6 summarize the metrics used to evaluate the
performance of NVP across various configurations with the
synthetic cell dataset.

Feature Dimension Selection: Table 5 summarizes the
performance across different feature dimensions. Increas-
ing the feature dimension generally improves the SSIM and
PSNR up to a dimension of 16, where the highest SSIM
(0.9317) are achieved. Beyond 16, both SSIM and PSNR
exhibit a decline. LPIPS, on the other hand, increases grad-
ually as feature dimensions grow, highlighting a trade-off
between feature complexity and perceptual quality. Con-
sidering these trends, the feature dimension of 16 offers the
optimal balance, delivering superior SSIM and competitive
performance in other metrics. This makes it the most effec-
tive choice for robust reconstruction.

Network Layers Selection: Table 6 evaluates the per-
formance of NVP with different numbers of neural network
layers. Similar to feature dimensions, adding layers ini-
tially improves performance, with the best results of PSNR
achieved at 6 layers.

In summary, by experimentally determining these pa-
rameters, we ensure that NVP delivers state-of-the-art per-
formance with optimal computational efficiency, making it
a practical choice for 3D RI reconstruction of biological
samples.

7. Ablation Study on Self-Calibration
Accurate calibration of viewpoints is critical in 3D render-
ing using the multi-slice model, as the precision of 3D re-
construction depends heavily on the exact geometry of each

captured image. However, in experimental setups, light
scattering and system inaccuracies often result in imprecise
measurements of angles and positions. We develop a self-
supervised calibration method to accurately determine illu-
mination positions. In our experiments, the camera position
is fixed while the illumination position is variable, whereas
in natural scenarios, the camera position (viewpoint) typi-
cally changes while the illumination is fixed. Thus, in our
method, calibrating the illumination positions is analogous
to calibrating viewpoints. To evaluate the robustness of the
self-calibration, we conducted an ablation study by intro-
ducing Gaussian noise to the illumination positions, repre-
senting the viewpoints.

In the ablation study, we simulated a real-world scenario
by adding Gaussian noise to the illumination positions. The
noise had a mean of 0, a standard deviation of 0.01, and a
maximum value of 0.05, relative to the illumination location
range of [−0.5, 0.5]. This represents a significant perturba-
tion, as the noise amplitude is substantial compared to the
total range of viewpoint values. We then compared the re-
construction quality of the synthetic tissue dataset with and
without self-calibration under these noisy conditions.

Table 7 shows the results of this ablation study. Self-
calibration demonstrates substantial improvements in re-
construction metrics for both RI and IMG. For RI, self-
calibration reduces MSE from 1.28× 10−2 to 5.71× 10−3,
increases SSIM from 0.2989 to 0.3911, improves LPIPS
from 0.8297 to 0.6732, and raises PSNR from 18.9189
to 22.4331. For IMG, self-calibration maintains high
SSIM (0.9117 compared to 0.9871 without calibration) and
achieves a lower LPIPS (0.0540 compared to 0.0133), while
keeping PSNR stable.

In summary, these results emphasize the importance of
self-supervised calibration in mitigating large misalignment
in illumination positions and achieving robust and accurate
3D reconstruction, even under challenging conditions with
substantial perturbations to the viewpoint locations.



Number Method Data MSE↓ SSIM↑ LPIPS↓ PSNR↑

5

nvp RI 6.9800× 10−2 0.4238 0.5140 11.5615
IMG 3.0475× 10−7 0.9999 0.0000 65.1605

exp RI 7.9224× 10−2 0.3623 0.5777 11.0114
IMG 9.4795× 10−5 0.9857 0.0176 40.2322

tri RI 1.3439× 10−1 0.0484 0.7143 8.7162
IMG 1.5973× 10−5 0.9969 0.0029 47.9662

7

nvp RI 6.8529× 10−2 0.4775 0.5038 11.6412
IMG 5.2585× 10−7 0.9999 0.0001 62.7914

exp RI 6.8954× 10−2 0.2954 0.5676 11.6144
IMG 2.6718× 10−4 0.9168 0.0329 35.7319

tri RI 1.2407× 10−1 0.1323 0.7122 9.0632
IMG 2.2469× 10−5 0.9956 0.0040 46.4842

10

nvp RI 6.1564× 10−2 0.4737 0.4720 12.1068
IMG 1.0395× 10−6 0.9998 0.0001 59.8318

exp RI 5.9335× 10−2 0.3034 0.5311 12.2669
IMG 2.8801× 10−4 0.9098 0.0365 35.4059

tri RI 8.6142× 10−2 0.1301 0.6537 10.6479
IMG 3.6801× 10−5 0.9920 0.0075 44.3414

20

nvp RI 4.4634× 10−2 0.4030 0.4500 13.5034
IMG 9.6994× 10−6 0.9985 0.0010 50.1326

exp RI 3.9627× 10−2 0.3973 0.3946 14.0201
IMG 1.8060× 10−5 0.9969 0.0027 47.4328

tri RI 7.3572× 10−2 0.2256 0.5452 11.3328
IMG 1.5390× 10−4 0.9738 0.0256 38.1276

Table 4. Performance metrics for different methods including NVP (nvp), explicit representation (exp), and triplane representations (tri),
and data types including RI and predicted images (IMG) on synthetic tissue sample data across various subsample sizes (5, 7, 10, 20).
Metrics include MSE, SSIM, LPIPS, and PSNR, providing a comprehensive assessment of reconstruction quality.



Feature
Dimension Metric MSE ↓ SSIM ↑ LPIPS ↓ PSNR ↑

10 RI 9.34× 10−4 0.8743 0.1160 30.2973
IMG 1.26× 10−7 1.0000 0.0000 69.0132

12 RI 8.46× 10−4 0.8744 0.1050 30.7278
IMG 1.29× 10−7 1.0000 0.0000 68.9044

14 RI 9.42× 10−4 0.8714 0.1452 30.2575
IMG 1.91× 10−7 1.0000 0.0000 67.1958

16 RI 1.38× 10−3 0.9317 0.1813 28.6035
IMG 2.51× 10−5 0.9988 0.0026 45.9979

18 RI 1.50× 10−3 0.7351 0.2488 28.2328
IMG 4.92× 10−7 1.0000 0.0000 63.0800

20 RI 1.40× 10−3 0.7667 0.2210 28.5367
IMG 3.83× 10−7 1.0000 0.0000 64.1675

22 RI 2.82× 10−3 0.6420 0.3490 25.5021
IMG 9.52× 10−7 1.0000 0.0000 60.2152

24 RI 1.45× 10−3 0.7569 0.2259 28.4001
IMG 5.99× 10−7 1.0000 0.0000 62.2278

Table 5. Metrics for RI and IMG across various test cases with different numbers of features.

Network
Layers Metric MSE ↓ SSIM ↑ LPIPS ↓ PSNR ↑

2 RI 1.5813× 10−3 0.8867 0.2071 28.0100
IMG 1.5323× 10−5 0.9993 0.0017 48.1465

4 RI 8.5690× 10−4 0.8781 0.1025 30.6707
IMG 1.0422× 10−7 1.0000 0.0000 69.8203

6 RI 8.1845× 10−4 0.8917 0.0918 30.8701
IMG 7.6782× 10−8 1.0000 0.0000 71.1474

8 RI 8.1915× 10−4 0.8982 0.0898 30.8664
IMG 7.2993× 10−8 1.0000 0.0000 71.3672

10 RI 1.5813× 10−3 0.8867 0.2071 28.0100
IMG 1.5323× 10−5 0.9993 0.0017 48.1465

Table 6. Performance metrics for NVP with varying network layers. The table reports MSE, SSIM, LPIPS, and PSNR for both RI and
IMG results, showcasing the impact of network depth on reconstruction quality. The best PSNR for RI is achieved at 6 layers, balancing
accuracy and efficiency.

Condition Metric MSE ↓ SSIM ↑ LPIPS ↓ PSNR ↑

With self-calibration RI 5.71× 10−3 0.3911 0.6732 22.4331
IMG 1.51× 10−3 0.9117 0.0540 28.2205

Without self-calibration RI 1.28× 10−2 0.2989 0.8297 18.9189
IMG 1.12× 10−3 0.9871 0.0133 29.4935

Table 7. Metrics for RI and IMG results under noise conditions (with and without self-calibration).


