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A. Theoretical Foundation

Existing pixel-wise contrastive learning (CL) still follows
binary CL [4, 6-8, 10, 28, 34] that pulls positive pairs to-
gether and push negative pairs apart, being extremely lim-
ited by the over-dispersion problem, leading to a loss of lo-
cal semantic continuity—an issue especially detrimental to
medical image analysis. In contrast, we introduce a the-
oretical framework to derive the generalization bound for
pixel-wise CL. We propose a novel CL paradigm, vector

CL, which models the distances between pixel-wise fea-
tures through a structured mapping function, controlling
dispersion while preserving local correlations.

A.l. Recap of the Over-Dispersion Problem and
Rademacher Complexity

Foundation of Contrastive Learning Let x € X de-
note an input medical image, and assume that a network
f: X — R extracts pixel-wise features { f();}, from
the image, where Nis the number of pixels. Define a sim-
ilarity metric {fo(z;), fo(z;)) to measure the distance be-
tween pixel-wise features. In binary CL, the loss Lp¢ 1, for
a given pixel on position ¢ can be expressed as an InfoNCE-
style [27] objective:

(F @i, faT)) /T
, , . = , (D)
eI @i f@P) /Ty (U@ d @/

Lpcr = —log

where ™ is a positive (similar) view of = and z~ repre-
sents negative samples; 7 is a temperature parameter. For
pixel-wise tasks, we additionally assume a local smoothness
constraint: for any pixel on position ¢ and its local neighbor-

hood N (3),
(f(@)s, f(z);) <6,

with J being a small constant relative to the range of possi-
ble feature values A. The upper bound of the § to describe
the dispersion of the local features: for any two pixels on
position 7, k in the local neighborhood N (7),

[(f(@)i f(2);) = (F(@)i, f@)r)]- - (B)

Vj € N (i), 2
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Foundation of Rademacher Complexity Let F denote

the hypothesis space of feature extractors. The empirical
Rademacher complexity [26] is defined as

R, (F) =E,
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where {o;} are independent Rademacher variables. For
pixel-wise learning, one might consider n/N samples (with
n images and N pixels per image). However, the local



smoothness constraint effectively reduces the “degrees of
freedom” in each local neighborhood [1, 22]. We can thus
define an effective local Rademacher complexity as

§
£Rn,local(]:) S (A) iRn(]:)a (5)

where the factor 0 /A represents the reduction in complexity
due to local smoothness.

By standard generalization theory [26], for any f € F,
with high probability (at least 1 —¢), the generalization error

satisfies
1og<1/s>> ®

R(f) < R(f) + 2% joca(F) + O ( Y

or equivalently,

R(f) < R(f)+2 (Z) R, (F)+0 ( bg&@) . (7

Thus, reducing the maximum local difference ¢ through bet-
ter modeling of local continuity directly tightens the gener-
alization bound.

Over-Dispersion Problem In the binary CL, since there
is no explicit control over how close or dispersed feature
representations are within a local neighborhood N (7), the
difference between adjacent pixel features dpcy, is unre-
stricted and can increase without bound. Therefore, the
features will be free to spread apart as long as they satisfy
the binary CL objective. This can lead to over-dispersion,
where nearby pixels develop large feature differences, even
if they belong to the same structure or object in the im-
age. Mathematically, this means that for neighboring pixels
j € N (i), their feature similarity can vary widely:

(f(x)i, f(x);) — anywhere within[—A, A],  (8)

since no term in binary CL enforces a small difference. This
means binary CL lacks a mechanism to prevent large local
variations, the feature differences d g, can span the entire
range of possible feature values A. Thus, in the worst case:

6BCL ~ A. (9)

This means adjacent pixel features could be as different as
features from completely unrelated image regions, which is
undesirable for pixel-wise tasks like segmentation or medi-
cal image analysis. Therefore, the generalization error sat-
isfies in the binary CL is

Rper(f) < R(f) + 2%, (F) + O ( S

1g<1/>> (10,

causing the over-dispersion problem and limiting the gener-
alization.

A.2. Vector Contrastive Learning

Derivation for Vector Contrastive Learning Vector CL
introduces an additional regression loss that explicitly en-
forces the mapping between feature distances and corre-
sponding spatial displacement vectors. Its loss is

Lyee = v =V(d)], (11)

where v represents the ground-truth displacement vector
and V(d’) is a mapping function applied on the computed
feature distances d’. It is formulated as a weighted sum
of a vector template matrix V, i.e., V(d') = Zé\;{é) Vid',

e{f (@) f(@)5)/m
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vector CL Ly ¢, can be further formulated as
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To minimize the Ly, the model must adjust feature_:
similarity (f(z);, f(x);) so that the weighted sum of V’
matches v. We assume that the v can be modeled as

NG N )
v = ZajVj (04]»20,2049':1)7 (13)
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the model enforces
7z = ZN(z)eU(”J)“ﬂ’J)J‘). Therefore, the similarity
(f(z;), f(x;)) can be further approximated as

(F(@)i.F(@)5)
% ~ «j, where the

(f(xs), f(z;)) = Tlog aj + Tlog Z. (14)

The maximum difference of our vector CL between any two
pixels in the /(i) can be formulated is:

bver = max (@), £(z)) — (@), Fon)
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Owing to the o, o € [Oumin, 1] (Qumin > 0), when a; =
1, (k) = amin the dy o will be:

1
dver < 7log . (16)
Omin
due to the normalization of weights (Zj aj = 1), only

when «; = 1, all other « € N (i) are 0. This situation
where one weight is exactly 1 and all others are zero is
degenerate (and would essentially revert to binary CL), so
typically the effective dy ¢, is much smaller than the worst-
case bound, i.e., dy ¢ < 7log ﬁ < A.



Generalization Bound for Vector Contrastive Learning
Recalling the generalization error bound for any f € F in
Equ.7, we substitute the improved local dispersion bound
dy o for § in the vector CL case and use the fact in Equ.16,
so that we will obtain:

Ryer(f) < R(f)+2 <li) R, (F) + 0(\/ 1%”)

a7
Since typically 7log(1/amin) < A (because the normal-

ization forces the weights to be spread across several pixels
1
“min is

rather than concentrating on one), the factor Tlos
much smaller than 1. In contrast, in the binary CL setting,
the worst-case dispersion is o, =~ A, leading to a much
looser bound. Compared with the Equ.10, our vector CL
making a tighter generalization bound.

B. Technical Details

B.1. Appearance transformation operation 7,

The appearance transformation operation 7, consists of
random noise, blurring, contrast, brightness, and in-
painting. Specifically,

1. For the random noise operation, it randomly generates
Gaussian noise from the Gaussian distribution with
w1 = 0 (mean) and o € [0, 0.02] (variance), and adds it
to the image.

2. For the random blurring, it performs random Gaussian
blurring with © = 0 and o € [0, 0.05] on the image.

3. For the random contrast, it performs multiplicative
transformation with (z — Z) * v + Z on the images =z,
where the Z is the average value and the v € [0.5, 1.5]
is the scaling value.

4. For the random brightness, it performs additive trans-
formation with x + S on the images, where the 3 is
randomly sampled from a Gaussian distribution with
w=0ando € [0,0.1].

5. For the random in-painting, it randomly selects boxes,
and the contents of these regions are replaced by the
noise from a uniform distribution.

These five sub-operations are used sequentially with a prob-
ability of 0.9 for the image with appearance transformation.

B.2. Space transformation operation 7,

We utilize random affine transformation [2] to construct
the space transformation operation 7,. For a clearer il-
lustration, we introduce it in 2D situation. As shown in
Equ.18, it as four sub-operations including the translation
tz,ty € [—0.2,0.2], rotation § € [—m/9,7/9], shearing
shy, shy € [—m/32,7/32], and scaling s,, s, € [0.5,1.5],
where the H, W in the Equ.18 are the height and width of
the medical images. These operations are These operations
form an affine transformation matrix ¢, that transforms the
position of each pixel p,, in the image to a new position p,;.

Therefore, the ground truth vector v’, will be generated via
the coordinate difference on the image grid v}, = p.;, — P,
and the vectors at each position jointly construct the dis-
placement vector field (DVF) 14, = {v’, }icr. The space-
transformed view x;, is generated by the DVF v, via mov-
ing the pixels to target positions and completing the non-
integer coordinates by bilinear interpolation.

B.3. Mask ¢, indicates matched regions

The mask €,;, eliminates the content mismatch of two views
T4, Tp caused by the spatial transformation. It is calculated
from the DVF ,; according to whether the transformed
coordinates exceed the image grid. For each position ¢ on
image grid, the value of the €, is

eby = Lo, (v + ph) Adow (vi + ), (19)

where the 1(g ) (+) and 1(g ) (-) are Iverson Notation [17].
Therefore, the mask ¢,;, be generated whose O values in-
dicate the mismatched regions and 1 values indicate the
matched regions.

B.4. Multi-scale fusion operation () in our VPA

The fusion operation (5) in our vector pyramid aggregation
integrates the DVFs from different levels. Here, we utilize
the fusion of DVFs in level 0 /9 and level 1 ¢/} to intro-
duce this operation. It has three steps: 1) Scale alignment:
The level 0 DVF ¢/9 is up-sampled to the same size of level
1 DVF ¢/} via bilinear interpolation. Then the values are
enlarged (double) to adapt to the size of the level 1 grid.
2) Space alignment: To align the center coordinates of the
vectors in these two level DVFs, the level 0 DVF is trans-
formed to align the level 1 DVE. 3) Vector fusion: Finally,
the DVFs in two levels are fused via addition. The whole
fusion operation (©) is formulated as,

Vector fusion

Scale alignment

/1 10 — /1 /1 /_/\T
Ui (DU = Ul + U2 Tew (V). (20)

Space alignment

where H and W are the height and width of level 1 grid,
and Z is the bilinear interpolation.

B.5. Vector template V>~ maps distances as vector

The vector template matrix describes the basic spatial re-
lationship of pixels that indicates the vectors in which the
center coordinates pointing to the coordinates in the recep-
tive field. As shown in Fig.1, for a clear illustration, we as-
sume that the template is a 2D matrix (2 channels) with 3x3
receptive fields. The value in each position is the vector,
i.e., (z,y), that indicates the relative position offset from
the center coordinate so that the V3*3 = {(x,y)|z,y €



Shearing Scaling

Translation Rotation
1 0 t,H| |cosf —sinf 0
Gap= |0 1 t,W| |sinf cos@ 0O |shy
0 0 1 0 0 1 0

55 €08 0 + shys, sinf

1

th 0 Sy 0 0 air a2 txH
1 0 0 sy, 0| = a2 ax t,W
0 1 0 0 1 0 0 1 (18)

—5,sin0 + shys, cos  t,H

= shys, cos 0 —5shysysing + s, cosf  t,W |,
0 0 1
‘ _ pi pr (a1 — 1)pl, + aup +t. H Ui _
vl =Py — P = dav - | Py | — [P | = |a21pl + (a2 — 1)py +t, W = |vy |, Yab = {vg Fier
1 1 1 1
0025 D 0.01, (0.025, (0.04, Dataset Type Num D P Task
-0.01) 4) CANDI [19] 3D T1 brain MRI 103 v S
(0. FeTA21 [30] 3D T2 brain MRI 80 \/ S
G o> X . s b = SCR [35] 2D chest X-ray 247 o/ S
2/ \ .nn w0t \if \ﬁ KiPA22 [12] 3D kidney CT 130 S
009 FIVES [18] 2D fundus 800  / S
Vector template V""" Distance map DV Weighted vectors PDCXR [20] 2D chest X-ray 5,956 v C
STOIC [31] 3D chest CT 2,000 Vv C
prrdire %}’;‘) ChestX-ray8 [36] 2D chest X-ray 112,120 v -
PPMI (T1) [25] 3D T1 brain MRI 837 \/ -

(-0.675, 0.655)

—

Vector summation

-002 (&
o g

Weighted vectors Vector v

Figure 1. The details of our vector template matrix. It is multiplied
to the distance map mapping the distances as vectors. The values
in the distance map are examples.

{-1,0,1}}. To map the distances as vectors, the vector
template matrix is multiplied by the distance map D>
of the receptive field corresponding to the center coordi-

nate, i.e., D33 . V33 = {(z,y)|lz = Vﬁ * DV y =

Vfﬁ * DI i 5 € {0,1,2}}, for weighted vectors in a ma-
trix. Finally, these weighted vectors are summed for the
vector v = Zj JE{0:1:2} i . i indicating the corre-
spondence between the center coordinate (0,0) and the co-
ordinates in the field.

C. Experiment Details
C.1. Datasets

As shown in Tab.1, eight publicly available datasets are in-
volved in this paper, specifically,

CANDI [19] The Child and Adolescent NeuroDevelop-
ment Initiative (CANDI) dataset has 103 T1 brain MR vol-
umes from 57 males and 46 females. Totally 28 brain tissue
regions are annotated for masks. For the segmentation task
(CANDIy), 40, 20, and 43 volumes are used as training,
validation, and test sets. Following [13], we resize and crop

Table 1. A Total of 9 publicly available datasets are involved in this
paper for the experiments, achieving great reproducibility. The
“D” and “P” mean the datasets are used for downstream tasks and
pretraining tasks. The “S” and “C” are the segmentation and clas-
sification tasks.

160x160x 128 volumes on the brain regions, and then nor-
malize the intensity via ﬁ%

FeTA21 [30] The Fetal Tissue Annotation 2021
(FeTA21) challenge dataset has 120 fetal T2w brain MR
volumes, and 80 of them are available as the training data
in the challenge. We split the 80 volumes and set 20 of them
as the training set, 20 of them as the validation set, and 40 of
them as test set. We normalize the intensity of the images
i) - and use the 128 x 128 x 128 random
cropping to unify the input size.

SCR [35] The segmentation of chest radiographs (SCR)
dataset is from the JSRT database [33] with 247 2048 x 2048
posterior to anterior (PA) chest radiographs. Three chest-
related structures, including the heart, chest, and clavicle,
are annotated for masks. We set 100 of them as the training
set, 47 of them as a validation set, and 100 of them as the
test set. Following [13], we resize the images to 512x512,
and normalize the intensity via 2/255 for the segmentation
task (SCRy).

KiPA22 [12] The kidney parsing 2022 (KiPA22) chal-
lenge dataset has 130 kidney CT volumes. These images
are cropped from 130 abdominal CT angiography volumes
for kidney regions with tumors. Four kidney-related struc-

via



tures, including the kidney, vessel, vein, and tumor, are an-
notated for masks. In 2D evaluation (KiPA%P), 13,846 2D
slices from 70 volumes are used as the training set, 5,864
2D slices from 30 volumes are used as the validation set,
5,959 2D slices from 30 volumes are used as the test set. We
normalize the intensity of the images via W,
and use the 128 x 128 randomly to unify the input size.
For 3D evaluation (KiPA223§D ), 70, 30, and 30 volumes are
used as training, validation, and test sets. We normalize the
intensity of the images via W, and use the
128 x 128 x 128 randomly to unify the input size.

FIVES [18] The fundus image vessel segmentation
(FIVES) dataset consists of 800 color fundus photographs
with vessel annotation from 573 patients. 540, 60, and 200
of the images are used as training, validation, and test sets.
We resize the images to 512 x 512, and normalize the in-
tensity via x/255 for the segmentation task (FIVES).

PDCXR [20] The pneumonia Detection Using Chest X-
ray (PDCXR) dataset has 5,856 chest X-ray images for the
diagnosis of pneumonia. Following [20], 3,659 of them are
used as training set (2,714 pneumonia, 945 normal), 1,573
of them are used as validation set (1,169 pneumonia, 404
normal), and 624 of them are used as test set (390 pneu-
monia, 234 normal). We resize the images to 512 x 512,
and normalize the intensity via z/255 for classification task
(PDCXR¢).

STOIC [31] The STOIC dataset is from the STOIC 2021
challenge with 2000 chest CT volumes for COVID-19 diag-
nosis. Following [14], 1000 of them are used as training set
(603 COVID-19, 397 normal), 400 of them are used as val-
idation set (241 COVID-19, 159 normal), and 600 of them
are used as test set (361 COVID-19, 239 normal). We uti-
lize the Lungmask [15] to extract the lung regions avoiding
the interference of the background, resample the resolutions
to 1mm?3, and normalize the intensity via W
for classification task (STOIC).

ChestX-ray8 [36] The ChestX-ray8 is our pre-training
dataset in 2D evaluation. It has 112,120 frontal-view chest
X-ray images with 1024 x 1024 resolution. 44,810 of them
are scanned from the anterior to posterior (AP) view and
67,310 of them are scanned from the PA view. We re-
size the images to 512x512, and normalize the intensity
x/255. During the pre-training, 384 X384 patches are ran-
domly cropped for augmentation.

PPMI [25] The PPMI is our pre-training dataset in 3D
evaluation. It is extracted from the PPMI database which is
a large Parkinson progression marker initiative database, for
837 T1 brain MR volumes. Following the pre-processing
in the CANIA dataset, we resize and crop 160x160x 128
volumes on the brain regions, and then normalize the inten-
sity via #% We also extract the brain regions via
HD-BET [16] to avoid the interference of background. Dur-
ing the pre-training, 128 x128x 128 patches are randomly

1 T Pre-trained Network ~N -

| Segmentation Head
Input image (One conv layer) Segmented mask

a) Fine-tuning in downstream segmentation tasks

Pre-trained Encoder
1
Act
%Enc > C[:;K > H
0

Class1ﬁcat10n Head
(One linear layer) Classified result

lnput image ‘
b) Fine-tuning in downstream classification tasks

Figure 2. The detailed implementations in our downstream tasks,
including the a) segmentation and b) classification.

cropped for augmentation.

C.2. Implementations

Our experiments are implemented by PyTorch [29] which
is a widely recognized deep learning library on NVIDIA
A100 SXUM4 GPU with 40 GB memory. Specifically,

C.2.1. Pre-training implementation

In both 2D evaluation and 3D evaluation, we utilize the
Adam optimizer [21] with the learning rate of 1 x 10~
and iterations of 2 x 10°. For 2D evaluation, 24 2D chest
X-ray images from ChestX-ray8 [36] dataset are randomly
sampled as a batch in each iteration with 384 x384 random
cropping augmentation. For 3D evaluation, 2 3D brain MR
volumes from the PPMI [25] dataset are randomly sampled
as a batch in each iteration with 128 x128x 128 random
cropping augmentation.

C.2.2. Downstream implementation

As shown in Fig.2, following [14], we utilize the fine-tuning
evaluation to demonstrate the adaptation ability in down-
stream tasks. The gradient optimizes all parameters through
the frameworks during the training. All the downstream
tasks are trained by Adam optimizer [21] with the learning
rate of 1 x 10~* and iterations of 4 x 10%.

For segmentation tasks, the whole pre-trained network
N is utilized to extract the pixel-wise features (level 4) f4,
and these features are putted into a new segmentation head
Seg,. to predict the final segmentation masks. The segmen-
tation head is a convolutional layer to map the features to the
channels of segmentation targets, thus constructing a seg-
mentation framework for the SCRg, KiPA22%P, FIVESg,
CANDIg, and KiPA223P tasks. We use the sum of Dice
loss [37] and cross-entropy loss [24] between the predicted
masks and ground truths to train the segmentation tasks.

For classification tasks, the encoder part of the pre-
trained network NF"¢ is utilized to extract the high-level



Backbone Methods SCR‘é‘r’C/c PDCXR¢ KiPAZZé” FIVESs AVG

U-Net [32] Scratch 31.8 90.4 741 794 314
COVER | 94.0(1129) 959155 | 80004509 872175 | 89.3(17.9)

TransUNet [5]  Scratch 89.2 77.4 57.6 81.7 76.5

COVER | 934,49 90.6(1139) | 76.7(110.1) 86.5145) | 86.8110.3)
SwinUNet [3]  Scratch 85.6 93.0 69.1 77.0 81.2

COVER | 869,15 956(i26) | 7260155 8480175 | 8500135
U-KAN 73] Scraich 89.4 §9.3 613 §0.3 80.1
COVER | 938444 9560163 | 71801105 84.9(140) | 8650164

Table 2. Our COVER has great cross-architecture compatibility
that achieves significant improvement on all U-Net, TransUNet,
SwinUNet, and UKAN. We evaluate it in our 2D setting.

SCR%% PDCXR¢ KiPA222P FIVESg AVG
Cor 1 Pl Cor T P Cor T P Cor 1 Pl Cor 1 P
0.908 <0.001 0.898 <0.001 0949 <0.001 0.995 <0.001 0938 <0.001

Table 3. The test-retest reliability analysis [11] of our COVER
on the tasks of 2D evaluation. The Cor is the Pearson correlation
coefficient [9], and the p is the p-value.

features (level 0) f°, and a global adaptive pooling is used
to compress features. Then these compressed features are
putted into a classification head Cls, to achieve the clas-
sified results, thus constructing a segmentation framework
for the PDCXR¢ and STOIC tasks. We utilize the cross-
entropy loss [24] between the predicted categories and
ground truths to train the classification.

D. More Framework Analysis and Results

D.1. Analysis of the reliability

As shown in Tab.3, we utilize the test-retest analysis [11]
to evaluate the reliability of our COVER. We pre-trained
and adapted our method twice in our 2D evaluation from
different initialization states, and then calculated the corre-
lation coefficient [9] and p-value between these two results.
Our COVER achieved 0.938 average Cors over four tasks
demonstrating very high consistency between two training
sessions. All p-values lower than 0.001 illustrated the sig-
nificant consistency. Therefore, these results show our pow-
erful reliability across initialization states, supporting the
implementation in the application.

D.2. Analysis of cross-architecture compatibility

As shown in Tab.2, our COVER has great cross-architecture
compatibility that achieves significant improvement on
all U-Net [32] (CNN-based), TransUNet [5] (CNN-
Transformer-based), SwinUNet [3] (Transformer-based),
and UKAN [23] (KAN-based). We utilize these four net-
works with different paradigms as the backbone network in
our COVER framework and train the framework on our 2D
evaluation setting. Compared with the “scratch” on these
networks, our COVER has achieved more than 3% average
improvement owing to the learned knowledge from the pre-
training data. Especially, on the TransUNet which utilizes
a vision transformer and is easy to fall into an over-fitting

Scratch
| — COVER (Ours)

. 5
40! Linear SCR*® s

0% 25% 50% 75% 100%
Pre-training data amount (2D evaluation)

Figure 3. The analysis of the pre-training data amount. When
enlarging the pre-training data amount, the performance of our
COVER is improved gradually.

state, our COVER brings a significant 10.3% average im-
provement.

D.3. Analysis pre-training data amount

As shown in Fig.3, we evaluate the variation of our
COVER’s performance with the enlarging of the pre-
training data amount on our 2D evaluation and adapt the
pre-trained model to the SCR%” via linear evaluation.
Compared with the “scratch”, our COVER will bring a sig-
nificant improvement even though only 25% pre-training
data is involved. When further enlarging the -pre-training
dataset, the gain of performance gradually decreases owing
to the similarity of the same category of medical images
in the pre-training dataset. Fortunately, our COVER has a
powerful modeling ability for pixel-wise features, enabling
the learning from the details effectively, so the performance
of the model is still improving gradually.

D.4. Visualization of the segmentation results

The visualization of the segmentation results (Fig.4)
demonstrates our superiority in the adaptation of pixel-wise
tasks. Due to our vector CL with distance modeling, the
pre-training enables the networks pixel-wise representation
with controllable dispersion. It has two observations: 1)
For large objects with varied appearances like the tumors
in KiPA222P and KiPA223P, our COVER achieves excel-
lent integrity owing to its disentanglement of underlying
explanatory factors hidden in low-level sensory data. The
BYOL, SimSiam, Model Genesis, Rotation, and “Scratch”
have poor performance on the tumors, because of their lack
of modeling for distinct features. 2) For small objects like
the thin vessels in FIVEg, small brain tissues in CANDIg
and FeTA21 g, and clavicles in SCR%E’%, our COVER also
has fine segmentation owing to our pixel-wise representa-
tion with distance modeling. Such representation preserves
the distinction of detail features thus making the networks
easy to segment these regions in downstream tasks.

D.5. Visualization of multi-scale vectors

We visualize more results of our regressed multi-scale vec-
tors (corresponding to Fig.8 in the manuscript) in Fig.5. It
aligns the appearance-transformed view z, to the space-
transformed view x; via the deformation of regressed vec-
tors in different scale levels. In a large number of cases,
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Figure 4. The visualization of the segmentation results for the methods with the top 2 average scores in each type. Our COVER achieves
excellent integrity and fine segmentation ability for thin structures owing to its effective representation of pixel-wise features.

we can find that our VPA effectively aligns the regions with
the same semantics between the views, illustrating that the
regressed vectors are able to indicate the correspondence of
the same semantics. Therefore, this means that in the em-

bedding space, our vector CL can model closer distances
between the same semantic objects and farther distances be-
tween different semantic objects, thus enabling our COVER
to discover accurate correspondence in the receptive field.



2D chest X-ray images in our 2D evaluation 3D T1 brain MR volumes in our 3D evaluation
Level 0 Level 1 Level 2 Level 3 Level 4 Space Appearance Level 0 Level 1 Leyel 2 Level 3 Level 4 Space
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Figure 5. Extension of multi-scale vectors analysis (Fig.8 in manuscript): The visualization of the regressed vectors via the alignment of
two views. Our VPA is able to discover the correspondence of the semantics at multiple levels for both global and detailed representation.
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