ZipVL: Accelerating Vision-Language Models through Dynamic Token Sparsity

Supplementary Material

A. Efficient Approximation of Full Attention
Scores

ZipVL requires accumulated attention scores to adaptively
assign the ratio of important tokens and normalized atten-
tion scores to identify token importance. However, atten-
tion scores are not accessible in fast attention implementa-
tions such as FlashAttention. To integrate our method with
FlashAttention, we follow prior literature [1] and select a
subset of tokens, referred to as “probe tokens”, and explic-
itly compute their attention scores:

QprobeKT )
Prior work [1] selects 10% of the tokens as probe tokens,
which still yields quadratic complexity in Eq. A. In con-
trast, we select only 64 recent tokens and 64 randomly po-
sitioned tokens, which incurs negligible computation over-
head in long-context scenarios.

A, robe = Softmax ( (A)

B. Additional Experimental Results

B.1. Benchmarking Against More State-of-the-Art
Methods

We compare the performance of ZipVL to state-of-the-art
token merging [3, 4] and token pruning [2] approaches. The
results are shown in Table A. ZipVL consistently outper-
forms VisionZip with a lower token budget. Compared to
AIM, despite its fixed schedule aggressively compressing
the token budget, it demonstrates significant accuracy drops
in multiple benchmarks. ZipVL also outperforms Pyramid-
Drop in two evaluated benchmarks with lower token budget.

Table A. Performance comparison with state-of-the-arts methods.
Results are obtained over LLaVA-Next-13B.

Method Token Budget (%) VQAv2 TextVQA GQA
VisionZip 333 78.5 63.6 62.5
AIM 6.4 71.5 61.8 57.5
PyramidDrop 46.8 71.5 64.5 63.3
ZipVL 30.6 79.7 63.6 64.3

B.2. Experiments on VideoChatGPT Benchmark

As shown in Table B, we further evaluate the performance
of ZipVL on VideoChatGPT. The results show that ZipVL
outperforms the baseline method, FastV, with notable mar-
gin while achieving higher sparsity.

B.3. Ablation on Probe Tokens

In this subsection, we conduct ablation studies on the se-
lection of probe tokens, as shown in Table C. When 128

Table B. Performance comparisons on VideoChatGPT with
LongVA-7B model. The evaluation metrics include Correctness
Information (CI), Detail Orientation (DO), and Contextual Under-
standing (CU).

Model Method  Sparsity (%) CI DO CU

Full 0 233 234 292
LongVA-7B  FastV 46.42 227 215 284
Ours 54.65 2.38 234 296

randomly positioned tokens are used as probe tokens, the
accuracy drops significantly to 6.3%. While relying solely
on recent tokens delivers reasonable performance, a hybrid
approach that combines recent and randomly positioned to-
kens demonstrates superior performance (52.6% compared
to 52.4%). Notably, this hybrid strategy achieves accuracy
comparable to computing full attention scores.

B.4. Ablation on Importance Metric

This subsection evaluates the impacts of different metrics
on layer-wise adaptive ratio assignment and the identifica-
tion of important tokens, as depicted in Table D. For adap-
tive ratio assignment, accumulated attention scores consis-
tently outperform normalized attention scores in terms of
overall performance. Conversely, for the identification of
important tokens, employing normalized attention scores
yields higher accuracy, which is consistent with the findings
of prior studies [1] in LLMs.

B.5. Effect of the Threshold

This subsection investigates the impact of the attention re-
tention threshold 7 on the proportion of important tokens
and model performance across different models and bench-
marks, as shown in Figure A. When 7 decreases but stays
above 0.98, the proportion of important tokens drops signif-
icantly, while the accuracy declines only marginally. This
suggests improved generation efficiency with minimal per-
formance loss. However, when 7 falls below 0.97, a notice-
able drop in model performance occurs, accompanied by a
continued decrease in the proportion of important tokens.

B.6. Overhead Analysis

As shown in Table E, we provide a detailed analysis of
FLOPs and memory usage for each operation in ZipVL.
The results indicate that the operations for evaluating token
importance introduce minimal computational and memory
overhead.



Table C. Performance comparisons across different probe token selection approaches on ChartQA benchmark. Here, “Ratio” denotes the
proportion of tokens involved in attention computation. “All” denotes all tokens are used as probe tokens, requiring full attention score

computation. To ensure a fair comparison, the threshold 7 is adjusted to maintain a similar “Ratio” across approaches.

Model Method Probe Tokens T Ratio (%) Acc. (%)
Original - - 100 54.8
64 recent 0.980 50.5 52.3
128 recent 0.987 50.5 52.4
LLaVA-Next-7B 7 v, 128 random 0975 513 6.3
64 recent & 64 random  0.975 50.6 52.6
All 0.960 53.6 52.6

Table D. Performance comparisons across different metric for adaptive ratio assignment and important token identification. Data is col-
lected over LLaVA-Next-7B model on ChartQA benchmark. Here, “Ratio” denotes the proportion of tokens involved in attention compu-
tation. To ensure a fair comparison, the threshold 7 is adjusted to maintain similar “Ratio” values across approaches.

Metric for Adaptive Ratio Assignment ~ Metric for Important Token Identification T Ratio (%) Acc. (%)
Accumulated Attention Scores Accumulated Attention Scores 0.975 50.28 52.40
Accumulated Attention Scores Normalized Attention Scores 0.975 50.55 52.64

Normalized Attention Scores Accumulated Attention Scores 0.995 51.84 51.56
Normalized Attention Scores Normalized Attention Scores 0.995 51.45 51.84
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Figure A. The effect of attention scores retention threshold 7 on the ratio of important tokens and the model performance.

Table E. The overhead of each operation in ZipVL over LongVA-7B. Data is collected with a sequence length of 32K.

TTFT FLOPs Memory

Method ) (T) (MB)
Original 328 77447 29474.44
+ approximate attention (Eq. 6)  3.73  776.15 29474.44
+ sort & cumsum (Eq. 7) 374  776.15 29474.44
+ normalize & top-k (Egs. 8-9)  3.74  776.15 29477.04
+ sparse attention 2.60 446.90 28031.60
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