
Supplementary Material for
Self-Calibrated Variance-Stabilizing Transformations for Real-World Image Denoising

A. More results on removal of synthetic and real-world noise
Method KODAK BSD300 SET14
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Baseline, N2C [29] 32.91/0.896 31.33/0.892 31.93/0.878
CBM3D [5] 31.87/0.868 30.48/0.861 30.88/0.854
N2V [13] 31.81/0.875 30.52/0.870 30.53/0.853
Nr2N [17] 30.45/0.811 29.34/0.803 29.75/0.815
ZS-N2N [16] 29.87/0.797 28.93/0.800 28.97/0.789
S2S [20] 31.28/0.864 29.86/0.849 30.08/0.839
DBSN [23] 31.64/0.856 29.80/0.839 30.63/0.846
SSDN [14] 32.40/0.883 30.99/0.877 31.36/0.866
R2R [18] 32.25/0.880 30.91/0.872 31.32/0.865
NBR2NBR [11] 32.08/0.879 30.79/0.873 31.09/0.864
B2UNB [22] 32.27/0.880 30.87/0.872 31.27/0.864
DCD-Net [32] 32.27/0.881 31.01/0.876 31.29/0.862
SST-GP [24] 32.75/0.898 31.18/0.880 31.68/0.872
Noise2VST (ours) 32.85/0.895 31.28/0.891 31.82/0.874
Noise2VST† (ours) 32.83/0.891 31.26/0.884 31.81/0.872
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Baseline, N2C [29] 33.08/0.887 31.40/0.871 32.41/0.883
CBM3D [6] 32.02/0.860 30.56/0.847 30.94/0.849
N2V [13] 31.72/0.863 30.39/0.855 30.24/0.843
Nr2N [17] 32.17/0.868 30.93/0.862 30.87/0.852
S2S [20] 31.37/0.860 29.87/0.841 29.97/0.849
DBSN [23] 30.38/0.826 28.34/0.788 29.49/0.814
SSDN [14] 32.40/0.870 30.95/0.861 31.21/0.855
R2R [18] 31.50/0.850 30.56/0.855 30.84/0.850
NBR2NBR [11] 32.10/0.870 30.73/0.861 31.05/0.858
B2UNB [22] 32.34/0.872 30.86/0.861 31.14/0.857
DCD-Net [32] 32.35/0.872 31.09/0.866 31.09/0.855
SST-GP [24] 31.78/0.880 31.12/0.869 31.38/0.871
Noise2VST (ours) 32.93/0.882 31.27/0.869 32.09/0.872
Noise2VST† (ours) 32.88/0.881 31.24/0.870 32.08/0.873
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Baseline, N2C + GAT [15, 29] 32.22/0.884 30.59/0.872 31.07/0.865
CBM3D + GAT [6, 15] 30.53/0.856 29.18/0.842 29.44/0.837
N2V [13] 31.18/0.864 29.88/0.858 29.79/0.841
Nr2N [17] 29.43/0.775 28.29/0.764 28.63/0.778
ZS-N2N [16] 29.06/0.775 28.15/0.782 27.97/0.763
S2S [20] 30.31/0.857 28.93/0.840 28.84/0.839
DBSN 30.07/0.827 28.19/0.790 29.16/0.814
SSDN [14] 31.67/0.874 30.25/0.866 30.47/0.855
R2R [18] 30.50/0.801 29.47/0.811 29.53/0.801
NBR2NBR [11] 31.44/0.870 30.10/0.863 30.29/0.853
B2UNB [22] 31.64/0.871 30.25/0.862 30.46/0.852
DCD-Net [32] 31.60/0.870 30.22/0.865 30.41/0.855
SST-GP [24] 31.99/0.879 30.84/0.897 30.87/0.867
Noise2VST (ours) 32.19/0.883 30.55/0.871 30.99/0.860
Noise2VST† (ours) 32.13/0.882 30.52/0.871 30.98/0.861
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Baseline, N2C + GAT [15, 29] 31.63/0.865 29.92/0.850 30.66/0.854
CBM3D + GAT [5, 15] 29.40/0.836 28.22/0.815 28.51/0.817
N2V [13] 30.55/0.844 29.46/0.844 29.44/0.831
Nr2N [17] 30.31/0.812 29.45/0.821 29.40/0.812
S2S [20] 29.06/0.834 28.15/0.817 28.83/0.841
DBSN 29.60/0.811 27.81/0.771 28.72/0.800
SSDN [14] 30.88/0.850 29.57/0.841 28.94/0.808
R2R [18] 29.14/0.732 28.68/0.771 28.77/0.765
NBR2NBR [11] 30.86/0.855 29.54/0.843 29.79/0.838
B2UNB [22] 31.07/0.857 29.92/0.852 30.10/0.844
DCD-Net [32] 31.00/0.857 29.99/0.855 29.99/0.843
SST-GP [24] 31.39/0.872 29.96/0.853 30.22/0.848
Noise2VST (ours) 31.60/0.865 29.89/0.849 30.60/0.850
Noise2VST† (ours) 31.51/0.862 29.84/0.848 30.57/0.850

Table 1. PSNR(dB)/SSIM denoising results on synthetic datasets in sRGB space. The highest PSNR(dB)/SSIM among unsupervised
denoising methods is highlighted in bold, while the second is underlined.

Method BM3D [5] DBSN [23] N2V [13] B2UNB [22] FBI-D (DND) [4] Noise2VST (ours)

DND 47.53/0.976 45.41/0.969 45.87/0.964 45.87/0.964 47.53/0.971 47.94/0.978

Table 2. PSNR(dB)/SSIM denoising results on Darmstadt Noise Dataset (DND) raw data [19].

B. Display of the learned VST
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Figure 1. GAT versus learned VST by the proposed algorithm for Figure 2 of the paper.
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C. Ablation study on the number of parameters
Figure 2 presents the results of an ablation study on the number of learnable parameters for Noise2VST. As expected,
increasing the number of parameters leads to improved PSNR, though the performance gains begin to plateau beyond a
hundred parameters. Our choice of 128 (+ 2) parameters is thus appropriate.
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Figure 2. PSNR (in dB) vs. number of parameters (i.e., number of knots for the spline fθ) on the testing set Confocal Fish [30].

D. Why can the noise level σ and the parameter θ1 be fixed?
Let D be a non-blind denoiser, assumed to be normalization-equivariant [10]:

∀(z, σ) ∈ RN × R>0,∀λ ∈ R>0,∀µ ∈ R, D(λz + µ1, λσ) = λD(z, σ) + µ1 , (1)

Note that a denoiser D can always be constrained to be normalization-equivariant by considering the application T inv ◦D◦T
with:

T : (z, σ) 7→
(

z − zmin

zmax − zmin
,

σ

zmax − zmin

)
and T inv : z 7→ (zmax − zmin)z + zmin , (2)

(see elements of proof in [10]). The following proposition states that the noise level σ can be arbitrarily set to σ0 = 25/255
and the parameter θ1 to 0 without loss of generality.

Proposition 1. Let z ∈ RN ,θ ∈ Rn, α, β ∈ R and σ > 0. There exists α′, β′ ∈ R and θ′ ∈ Rn with θ′1 = 0 such that:

f inv
θ,α,β(D(fθ(z), σ)) = f inv

θ′,α′,β′(D(fθ′(z), σ0)) .

Proof. Let z ∈ RN ,θ ∈ Rn, α, β ∈ R and σ > 0. By normalization-equivariance of the denoiser D:

f inv
θ,α,β(D(fθ(z), σ)) = f inv

θ,α,β(
σ

σ0
D(

σ0

σ
fθ(z)−

σ0

σ
fθ(zmin)1, σ0) + fθ(zmin)1) .

But it is easy to see that there exists θ′ ∈ Rn with θ′1 = 0 such that:

fθ′(z) =
σ0

σ
fθ(z)−

σ0

σ
fθ(zmin)1 .

Its algebraic inverse is:
f−1
θ′ (z) = f−1

θ (
σ

σ0
z + fθ(zmin)1),

and, for α′ = α
σ

σ0
and β′ = αfθ(zmin) + β, we have:

f inv
θ′,α′,β′(z) = f−1

θ′ (z) + α′z + β′1 = f−1
θ (

σ

σ0
z + fθ(zmin)1) + α′z + β′1 = f inv

θ,α,β(
σ

σ0
z + fθ(zmin)1) .

Finally, f inv
θ,α,β(D(fθ(z), σ)) = f inv

θ′,α′,β′(D(fθ′(z), σ0)) .
end

Table 3 experimentally confirms what was theoretically proven: the noise level σ and the parameter θ1 can be fixed during
training.

2



θ1

σ
σ = 15/255 σ = 25/255 σ = 50/255 Learned

θ1 = 0 32.882 32.882 32.880 32.878
Learned 32.880 32.883 32.879 32.881

Table 3. PSNR(dB) results of Noise2VST with different combinations of θ1 and σ on the testing set Confocal Fish.

E. Choice of the Gaussian denoiser
E.1. Blind denoisers are helpless for real-world noise

(a)

Noisy

PSNR: 26.14 dBPSNR: 26.14 dB PSNR: 36.14 dBPSNR: 36.14 dB PSNR: 26.94 dBPSNR: 26.94 dB PSNR: 27.21 dBPSNR: 27.21 dB

Noisy DRUNet (non-blind) [29] Restormer (blind) [25] Xformer (blind) [26]
PSNR: ∞ dBPSNR: ∞ dB PSNR: 34.52 dBPSNR: 34.52 dB PSNR: 30.88 dBPSNR: 30.88 dB PSNR: 30.04 dBPSNR: 30.04 dB

Ground Truth DRUNet (σ=25/255) [29] Restormer (σ=25/255) [25] Xformer (σ=25/255) [26]

(b)

Noisy

PSNR: 21.71 dBPSNR: 21.71 dB PSNR: 36.10 dBPSNR: 36.10 dB PSNR: 24.11 dBPSNR: 24.11 dB PSNR: 25.52 dBPSNR: 25.52 dB

Noisy DRUNet (non-blind) [29] Restormer (blind) [25] Xformer (blind) [26]
PSNR: ∞ dBPSNR: ∞ dB PSNR: 35.68 dBPSNR: 35.68 dB PSNR: 33.27 dBPSNR: 33.27 dB PSNR: 34.22 dBPSNR: 34.22 dB

Ground Truth DRUNet (σ=25/255) [29] Restormer (σ=25/255) [25] Xformer (σ=25/255) [26]

Figure 3. Qualitative real-world image denoising results within the proposed Noise2VST framework for different types of neural networks.
(a): image from FMD dataset [30], (b): image from W2S dataset [31]. Only the non-blind denoising network (i.e., with a noise level
map as additional input [28, 29]) is able to process the noise correctly, a phenomenon already observed in [28] for real-world noise. The
pre-trained weights are taken from [10, 25, 26, 29].

E.2. Noise2VST can handle a wide range of (non-blind) denoisers
Non-blind Gaussian denoisers are recommended within our framework due to their better generalization abilities. We tested
our method with three others:
• FDnCNN: the unpublished non-blind version of DnCNN,
• GS-DRUNet [12]: a “gradient step” denoiser,
• NL-Ridge [9]: a “traditional” denoiser written in PyTorch (thus supporting automatic differentiation).
Table 4 presents the experimental results, which highlight the ability of Noise2VST to handle a wide range of denoisers.

Training
Inference

Same as training DRUNet

DRUNet [29] 32.88 32.88
FFDNet [28] 32.62 32.88

FDnCNN [27] 32.59 32.88
GS-DRUNet [12] 32.87 32.88

NL-Ridge [9] 31.42 32.71

Table 4. PSNR (in dB) results of Noise2VST with different combinations of Gaussian denoisers on the testing set Confocal Fish [30].
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F. How does the learned VST stabilize the variance in the case of synthetic Poisson noise?
In this experiment, we artificially generate noisy images by adding Poisson noise to clean images. The noise model is:

zi = P(λsi)/λ

where λ controls to level of noise. Giving the information of λ to GAT [15], we know that that the variance of the random
variable fGAT(zi) is approximately constant, whatever the value of si. But what about the learned VST fθ? Figure 4
shows that, even though the learned VST is less precise than GAT in stabilizing variance, they do achieve almost the same
performance for image denoising in the end. This surprising phenomenon can be attributed to the fact that powerful denoisers
such as [28, 29] can adapt to a noise level which was slightly over or under-estimated, without much consequences with regard
to the outcome. Of course, it is recommended to use GAT for synthetic Poisson noise over the learned VST when the oracle
parameter λ is given. However, as shown in the paper, the proposed method finds its true interest in the case of real noise.
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Figure 4. GAT versus learned VST for synthetic Poisson noise. The learned transform fθ is less precise than fGAT in stabilizing the
variance of synthetic Poisson noise with parameter λ (assuming that GAT knows the oracle parameter λ) but the consequences in terms of
denoising performance are very limited. As a baseline, we also compare with the case where no VST is applied (the best noise level σ is
shown in each case).
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G. How does the learned VST stabilize the variance in the case of synthetic Rayleigh noise?
In this experiment, we artificially generate noisy images by adding Rayleigh noise to clean images. The noise model is:

zi =

√
2

π
Rayleigh(si) , (3)

where the multiplicative constant is added to guarantee that E(zi) = si (zero-mean noise). Interestingly, there exists trans-
formations that stabilize exactly the variance, namely:

fexact : z 7→
√
24

π
log(z) + c . (4)

where c ∈ R can be any constant. This is because the log-Rayleigh distribution [21] has a variance of π2/24, which does
not depend on its parameter si. Note however that, contrary to mixed Poisson-Gaussian noise, fexact(zi) is not close to a
normal distribution. The exact unbiased inverse [15] is given by the implicit mapping E[fexact(z)|s] 7→ s, where z denotes
the random variable following (3). According to [21], E[fexact(z)|s] =

√
24
π (log(s)+ (log(2)+ log(2/π)− γ)/2)+ c, hence:

f inv
exact : z 7→ exp

(
γ − log(2)− log(2/π)

2

)
exp

(
π√
24

(z − c)

)
. (5)

where γ is the Euler constant defined by −
∫ +∞
0

log(x) exp(−x)dx.
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Figure 5. Exact versus learned VST for synthetic Rayleigh noise. The learned transform fθ is less precise than fexact in stabilizing the
variance of synthetic Rayleigh noise but it actually gives slightly better results. As a baseline, we also compare with the case where no
VST is applied (the best noise level σ is shown in each case).
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H. On the benefit of constraining the inverse transform to be closed to the algebraic one

Inverse Kodak [8] FMD [30] SIDD [1]
VST (Poisson λ=30) Confocal Fish Validation

gθ (unconstrained) 31.68/0.866 32.91/0.906 50.92/0.991
f−1
θ (algebraic inverse) 31.95/0.878 32.37/0.896 51.59/0.991

f inv
θ,α,β (proposed) 32.19/0.883 32.88/0.905 51.66/0.992

Table 5. Ablation study: PSNR(dB)/SSIM denoising results of Noise2VST depending on the nature of the inverse transform.

I. On the benefit of a model-free VST
In the proposed framework, the VST is searched among the family of continuous piecewise linear (CPWL) functions which
allows high flexibility. But what if the VST is searched among the family of the generalized Anscombe transforms (GAT)
instead, parameterized by only two positive parameters a and b? More precisely, the direct and inverse transforms, parame-
terized by a and b, are given by:

fGAT : z 7→ 2

a

√
max

(
az +

3

8
a2 + b, 0

)
, (6)

and

f inv
GAT : z 7→ a

(
1

4
z2 − 1

8
+

1

4

√
3

2
z−1 − 11

8
z−2 +

5

8

√
3

2
z−3

)
− b

a
, (7)

respectively. Note that the inverse transform f inv
GAT is the closed-form approximation of the unbiased inverse transform rec-

ommended by [15]. Table 6 shows that it is possible to use the proposed framework to find the GAT parameters in the case
of synthetic noise. However, in real-world noise conditions, the proposed model-free VST achieves better results than the
learned model-based VST, which assumes a mixed Poisson-Gaussian model, perhaps not entirely accurate. Nevertheless, it is
worth noticing that the estimation of parameters a and b within our framework is still better than the parameters provided by
the authors of the FMD dataset [30] or the ones estimated by the zero-shot method [7] for W2S dataset [31] (see Table 2 and
3 of the paper). Finally, note that for real-noise experiments, we utilized the raw W2S dataset [31] rather than the normalized
version provided by the authors, as normalization can alter the noise distribution in a way that may negatively impact GAT.

Model Number of Kodak [8] FMD [30] FMD [30] W2S ch0 [31]
for VST parameters (Poisson λ=30) Confocal Fish Confocal Mice avg1

fGAT (model-based) 2 32.19/0.883 32.78/0.897 38.23/0.965 35.04
fθ (model-free) 130 32.19/0.883 32.88/0.905 38.27/0.965 35.65

Table 6. Ablation study: PSNR(dB)/SSIM denoising results of Noise2VST depending on the model for the VST.

J. Limitations
There are obviously no performance guarantees when the noise properties deviate from our assumptions, namely the noise is
zero-mean, spatially independent and Gaussianizable (i.e. there exists a transformation from the input noise distribution to
a Gaussian-like one). Figure 6 shows two artificial (and non-realistic) examples in which Noise2VST encounters difficulties
due to the out-of-distribution nature of the noise. We notice that the spatial independence of noise appears to be the most
crucial property of all. However, we would like to emphasize that the noise assumptions underlying Noise2VST are already
quite broad and have proven to be sufficient for most applications, especially in fluorescence microscopy. Furthermore, these
are the same assumptions commonly made in the literature, aligning with works such as Noise2Void [13], Noise2Self [3],
and their variants [11, 16, 18, 20, 22].
Of course, this is not speficic to Noise2VST. For example, the traditional Anscombe transform [2] also has troubles when the
noise assumption (namely Poisson noise) does not align with the input noise distribution (see Fig. 7).
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Figure 6. Examples of out-of-distribution noises for Noise2VST.
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Violated assumption:Violated assumption:

- Poisson noise with λ = 10- Poisson noise with λ = 10

9.01 dB9.01 dB 12.17 dB12.17 dB
PNSR z:PNSR z: PNSR ŝ:PNSR ŝ:
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