
Puzzle Similarity: A Perceptually-guided Cross-Reference Metric for Artifact
Detection in 3D Scene Reconstructions

Supplementary Material

Summary In this supplementary material, we include ex-
tra details on the implementation of PuzzleSim, with exem-
plary code in Pytorch, as well as extra details on our choice
of model backbone for the metric and extended qualitative
and quantitative results with comparisons with all tested
metrics. Additionally, we include extra information on our
recursive automatic inpainting application and an ablation
study.

1. Puzzle Similarity Implementation Details
Recall from Section 3 that we can compute the similarity
map based on an outer product.

F̂ℓ(I1:N ) ∈ RN×Hℓ×Wℓ×Cℓ

F̃ℓ(I1:N ) = flatten
(
F̂ℓ(I1:N )

)
∈ RNHℓWℓ×Cℓ

Sℓ(I) =

∈ RHℓWℓ︷ ︸︸ ︷
rowmax F̃ℓ(I1:N

ref )⊗ F̃ℓ(I)︸ ︷︷ ︸
∈ RNHℓWℓ×HℓWℓ

(1)

Computing this outer product naı̈vely would require sub-
stantial amounts of memory, as the resulting matrix be-
fore taking the maximum over rows has a dimensional-
ity of (NHW,HW ), thus NH2W 2 elements. N =
100 reference images of size 128 × 128 would result in
26, 843, 545, 600 elements, requiring ≈ 100GB memory for
32-bit floating point numbers. We observed that this prob-
lem is similar to flash attention [2] and derived from it a
memory-efficient implementation.

We leverage the fact that we are taking the maximum
along rows of size (NHW ). Knowing this, we can com-
pute partial results by looping over either N , H , or W
and aggregating the current maximum for each element,
which reduces the memory footprint. At the same time, we
take advantage of the GPU’s cache hierarchy by looping in
blocks. This gives an additional speedup without loss of
generality. With this approach, we can cut the biggest ma-
trix to (NbW,HW ) in case we choose to aggregate along
the height dimension while running over b-sized blocks with
b << H . The final algorithm is detailed below.

def puzzle_similarity(F, img)
"""
F: base model
img: image to test
"""
layer_similarities = []
ref_feats = compute_normalized_features(F, refs)
features = compute_normalized_features(F, img)
for layer in layers:

refs = ref_feats[layer]
img_ = feats[layer].squeeze()
N, C, H, W = refs.shape

candidates = []
# factor over h, the dimension that you max over
block_size = 4
for h in range(0, H, block_size):

sim = torch.einsum(
'cHW,nchw->nHWhw',
img_, refs[:, :, h:h+block_size, :]

)
c_WH = (

sim
# what was rows in sim is now last dimension
.reshape(N, H * W, -1)
.max(dim=-1) # distribute max over ref.W
.values # get max values instead of indices
.max(dim=0) # distribute max over ref.N
.values # get max values instead of indices

)
candidates.append(c_WH)

sim_map = (
torch.stack(candidates, dim=0)
.max(dim=0) # distribute max over ref.H
.values
.view(H, W) # reshape to spatial map

)
sim_map = upsample(sim_map * w[layer], img.shape)
layer_similarities.append(sim_map)

return sum(layer_similarities)

In our implementation, we use a block size of 4, which
reduces the matrix size to (N4W, HW), reducing memory
load to only ≈ 3.5GB. This approach enables us to com-
pute PuzzleSim efficiently even on high-resolution images,
given that computing time is primarily dominated by mem-
ory fetches in our metric.

To see the impact of our blockwise implementation, we
compare its runtime with the naı̈ve implementation. In
Tab. 1, we show the results for different image sizes and
number of reference images. After five warm-up steps, we
measured the computation time in milliseconds, averaging
over 200 runs. The ± indicates half the distance between
the 0.05 and 0.95 quantiles. We observe that the blockwise
implementation appears more stable and scales better. The
experiment was performed on an NVIDIA GeForce GTX
3090 with 24GB of memory.

2. On the Choice of Backbone Model
In Tab. 2, we summarize the differences we considered
when choosing our backbone. While VGG models achieve
higher performance on the ImageNet benchmark [6], model
size and computational complexity are problematic in ef-
ficiency terms for our metric. Furthermore, added model
capacity and improved classification performance did not



Table 1. Comparison of the blockwise and naive implementation across different numbers of references and image sizes in ms.

Image Size # References PuzzleSim (block-
wise)

PuzzleSim (naı̈ve)

(240, 131) 25 3.8±1.95 2.2±1.36

(240, 131) 50 6.0±0.58 26.3±0.13

(240, 131) 75 14.7±0.16 41.4±0.17

(240, 131) 100 20.1±0.05 57.9±0.07

(480, 262) 25 5.6±0.29 4.5±0.11

(480, 262) 50 15.3±0.08 12.7±0.09

(480, 262) 75 185.7±0.00 331.8±0.00

(480, 262) 100 299.2±0.00 499.1±0.00

(960, 524) 25 56.8±0.07 57.2±0.74

(960, 524) 50 321.3±0.00 727.2±0.00

(960, 524) 75 2653.3±0.00 5421.8±0.00

(960, 524) 100 5799.1±0.00 15353.6±0.00

(1920, 1048) 25 754.4±0.00 Out-of-memory

(1920, 1048) 50 1516.7±0.00 Out-of-memory

(1920, 1048) 75 31104.0±0.00 Out-of-memory

(1920, 1048) 100 69807.4±0.00 Out-of-memory

seem to substantially improve the alignment of our model
with human perception; rather hindering it. AlexNet and
SqueezeNet offer much greater speed and lower memory
consumption while also producing slightly preferable maps
in our empirical evaluations.

Model #Parms Acc. Efficiency Mem.

VGG-19 144M High Low High
VGG-16 138M High Low High
AlexNet 60M Mid Mid Mid
SqueezeNet 1.2M Mid High Low

Table 2. Pre-trained models considered for our backbone. Accu-
racy refers to their relative performance on the ImageNet bench-
mark [6].

3. Dataset Collection Experiment Details
The experiment was run on a DELL U2718Q monitor with
a consistent display setting across all participants, keeping a
constant viewing distance of around 70 cm under controlled
lighting conditions. We recruited 22 participants (10 male,
11 female, 1 undisclosed) with a mean age of 24, all pos-
sessing normal or corrected to normal visual acuity. All test

subjects were compensated for their time.

4. Extended Metric Validation Results
In this section, we will provide more visual comparisons
and further experiments comparing our metric against full-
reference (FR) metrics. Typically, a clean reference image
is not accessible, but the way we collected our dataset, we
made sure to have one, regardless, so we can rank cross-
reference also against hypothetical FR metric performances.

4.1. Extended Qualitative Results
We include extensive qualitative results on all tested
full-, cross- and no-reference metrics in Figs. 1 and 2 with
more examples. The color coding is always relative and
scaled between the minimum and maximum score of each
individual map. To facilitate comparison, we inverted the
color coding of distance metrics, such that red indicates
poor quality and blue indicates good quality. Among the
FR metrics, we observe that the reference allows them to
predict fine-grained inaccuracies but overall fails to prior-
itize artifacts incongruent to human observers. Providing
a fine map resolution helps with identifying problematic
primitives. The coarser resolutions of PIQE and CrossScore
could result in challenges in this regard. CNNIQA maps
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Figure 1. More elaborate comparison to all other FR metrics. For LPIPS we chose the VGG backbone as it is the most popular choice.
Warm colors indicate artifacts or poor reconstruction quality.

deliver remarkable precision and resolution, however, they
align poorly with human-perceived artifacts. PAL4VST
seems to be an extremely conservative binary segmentation
model, generally flagging the right areas but too cautiously.

4.2. Extended Quantitative Results
Adapting pooled metrics to produce spatial quality
maps We selected commonly used image quality metrics

(L1, L2, SSIM [7], LPIPS [11]). We adapt L1, L2, and
SSIM by simply removing the pooling step. For LPIPS,
after computing the distance in the embedding space, the
metric already upsamples each feature map back to the
original image resolution. We can then pool across maps
but not along 2D image dimensions, allowing us to re-
tain the map. We compare LPIPS with three base mod-
els: VGG, AlexNet, and SqueezeNet. We further com-
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Figure 2. More elaborate comparison to all other no-reference and cross-reference metrics. Warm colors indicate artifacts or poor recon-
struction quality.

pare with FLIP [1], a commonly found metric in the field
of physically-based rendering. It already produces spatial
quality maps by default.

Comparison with Full-Reference Metrics Tab. 4 shows
the average Pearson and Spearman correlation averaged
across all datasets. On average, after SSIM, FLIP and
LPIPS achieve the highest correlation with human judgment
within full-reference metrics when excluding VDPs that we
cover separately in the next paragraph. Our method super-
sedes all full-reference metrics while maintaining a lower
standard deviation compared to the best-performing met-
rics, showing consistently high performance over various

types of artifacts. Tab. 3 depicts average correlation scores
for each dataset. While our metric prevails on most datasets,

FLIP performs better on garden, which we attribute to the
fact that most common artifacts are pitch-black regions (see
Fig. 1) where the camera faces empty space. These kinds
of artifacts are easy to spot, especially when a reference is
available. Our hypothesis, as to why our metric outperforms
FR metrics, is that they capture different quantities that, un-
like our metric, do not necessarily align well with human
judgment.

Comparison with Visual Difference Predictors The ex-
plicit model of low-level human vision in VDPs usually



Table 3. Pearson Correlation between full-reference Image Metrics, our cross-reference Metric and Human Perception per Dataset
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L1 0.203 0.318 0.420 0.316 0.067 0.607 0.594 0.603 0.134 0.211 0.142 0.335
L2 0.193 0.307 0.418 0.332 0.080 0.573 0.597 0.619 0.130 0.183 0.144 0.323
SSIM [7] 0.174 0.304 0.379 0.367 0.252 0.525 0.601 0.549 0.247 0.522 0.398 0.503

FLIP [1] 0.267 0.405 0.451 0.366 0.192 0.719 0.681 0.649 0.238 0.181 0.139 0.400
LPIPS (vgg) [11] 0.197 0.413 0.389 0.240 0.243 0.546 0.602 0.531 0.232 0.364 0.392 0.394
LPIPS (alex) [11] 0.169 0.276 0.264 0.233 0.346 0.394 0.536 0.502 0.154 0.271 0.251 0.340
LPIPS (squeeze) [11] 0.238 0.402 0.290 0.289 0.103 0.561 0.512 0.504 0.216 0.353 0.240 0.401
FovVideoVDP [4] 0.369 0.457 0.562 0.467 0.306 0.661 0.824 0.753 0.370 0.583 0.337 0.593
PuzzleSim (ours) 0.594 0.565 0.618 0.461 0.609 0.675 0.768 0.636 0.505 0.642 0.717 0.593

Sp
ea

rm
an

L1 0.150 0.238 0.232 0.209 0.050 0.390 0.346 0.501 0.118 0.150 0.190 0.287
L2 0.155 0.250 0.235 0.218 0.053 0.401 0.352 0.513 0.123 0.146 0.191 0.291
SSIM [7] 0.168 0.120 0.253 0.415 0.248 0.540 0.248 0.496 0.279 0.471 0.402 0.433

FLIP [1] 0.204 0.336 0.252 0.272 0.201 0.466 0.437 0.565 0.210 0.114 0.214 0.363
LPIPS (vgg) [11] 0.199 0.256 0.312 0.340 0.184 0.443 0.488 0.560 0.236 0.427 0.407 0.341
LPIPS (alex) [11] 0.195 0.182 0.218 0.184 0.159 0.366 0.343 0.363 0.175 0.256 0.297 0.190
LPIPS (squeeze) [11] 0.207 0.382 0.317 0.351 0.048 0.386 0.497 0.587 0.210 0.389 0.321 0.311
FovVideoVDP [4] 0.339 0.312 0.455 0.421 0.291 0.534 0.646 0.735 0.381 0.554 0.362 0.473
PuzzleSim (ours) 0.468 0.393 0.382 0.499 0.428 0.428 0.658 0.601 0.307 0.540 0.548 0.440

Table 4. Aggregated correlation between all Image Metrics and
Human Perception with mean and standard deviation across all
datasets.

Metric Pearson ↑ Spearman ↑

Fu
ll-

R
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L1 0.329±0.226 0.239±0.176

L2 0.325±0.221 0.244±0.178

SSIM [7] 0.402±0.164 0.339±0.172

FLIP [1] 0.391±0.236 0.303±0.180

LPIPS (vgg) [11] 0.378±0.154 0.349±0.146

LPIPS (alex) [11] 0.311±0.145 0.244±0.111

LPIPS (squeeze) [11] 0.342±0.156 0.334±0.168

FovVideoVDP [4] 0.523±0.192 0.459±0.166

N
R

PAL4VST [10] 0.078±0.112 0.062±0.085

CNNIQA [3] 0.144±0.247 0.130±0.253

PIQE [5] 0.292±0.222 0.268±0.221

PaQ-2-PiQ [9] 0.402±0.178 0.349±0.225

C
R CrossScore [8] 0.510±0.204 0.378±0.209

PuzzleSim (ours) 0.615±0.120 0.474±0.137

produces strong correlations between the metric and hu-
man assessment. We compare against the state-of-the-art
FovVideoVDP [4]. While the metric can take into account
higher-order perceptual cues like motion and eccentricity,
we disabled them as we are 1) analyzing single static frames
and 2) are not assuming specific viewing conditions such as

display size or distance to the screen. Puzzle Similarity not
only matches but often surpasses FovVideoVDP, particu-
larly in texture-rich scenes like treehill, stump, and flowers.
This is remarkable since FovVideoVDP is an FR metric,
while we do not require a direct reference.

5. Automatic Recursive Inpainting

In this section, we will give more details about the inpaint-
ing application formulation and present an ablation study to
showcase that our metric is the best candidate for our in-
painting application.

5.1. Formulation Details

In the following, we provide extended details on the math-
ematical framework of the inpainting method. Upon sam-
pling threshold candidates τ1:N we threshold the initial sim-
ilarity map S with each candidate to obtain the binary mask
Mi as shown in Eq. 7. We inpaint the current image with
each candidate mask and assess their quality with our Puz-
zleSim metric:

Îi = Inpaint(I,Mi)

Ŝi = PuzzleSim(Îi)
(2)



Table 5. Quantitative results of our inpainting application with
different metrics producing the inpainting masks. The inpainted
image is compared to the same image inpainted using human-
generated masks. The dashed line separates no-reference (top) and
cross-reference (bottom) metrics.

Metric PSNR ↑ SSIM ↑ LPIPS ↓

PAL4VST [10] 15.03 0.436 0.580
CNNIQA [3] 23.07 0.850 0.151
PIQE [5] 21.85 0.742 0.250
PaQ-2-PiQ [9] 24.49 0.879 0.120

CrossScore [8] 24.58 0.863 0.118
PuzzleSim (ours) 25.16 0.902 0.102

To determine the candidate quality, we compute the average
change in the similarity δi of the inpainted regions:

|Mi| =
HI∑
h=1

WI∑
w=1

M
(h,w)
i

δi =
1

λi|Mi|

HI∑
h=1

WI∑
w=1

(Ŝ(h,w)
i − S(h,w))M

(h,w)
i︸ ︷︷ ︸

Similiarity improvement of the inpainted area

λi = |Mi|
1
p

(3)

where |Mi| indicates the number of inpainted pixels and
λi is a regularization term penalizing bigger masks with
strength p that we empirically chose to be 4. Once the initial
threshold τ∗ is found, we iteratively find a new threshold in
the interval τ∗ ±α−1 std(Ŝ∗), where α is a hyperparameter
that we set to 10 for all examples. By including the standard
deviation, we dynamically adapt to the distribution of sim-
ilarity scores. As the scores become uniform, the interval
becomes narrower, facilitating convergence.

5.2. Ablation Study
To showcase that our metric is the best choice for our
inpainting application, we run an ablation study by test-
ing all other cross-reference and no-reference metrics as a
drop-in replacement for our metric. We leverage our hu-
man masks to produce an upper bound for inpainting re-
sults by thresholding the human annotations to obtain an
optimal mask for inpainting. The optimal inpaintings are
compared to all the automatically generated results from
our application through PSNR, SSIM, and LPIPS. We re-
peated this procedure for our entire dataset, and the aver-
aged results obtained are shown in Tab. 5, where our metric
outperforms all competitors on all criteria. With CrossS-
core following up second, we observe that cross-reference
metrics have the upper hand on this task. This was ex-
pected since cross-reference metrics leverage more infor-
mation compared to no-reference metrics that have to judge
images at face value.
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