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Supplementary Material

A. Implementation Detatils

A.1. Training Hyperparameters

In Table A.1, we list the detailed training dataset usage and
hyperparameters. The training data are constructed based
on the following datasets: BLIP-LAION-CC-SBU [23],
which contains 558K image-text pairs from BLIP-captioned
CC3M [19], SBU [31], and LAION400M [33] filtered by
LLaVA; LLaVA-Instruct-mix665k [21], which con-
tains 665k visual instruction-following data constructed to
train the LLaVA family of models; and synthetic data cre-
ated using images and questions from the Cambrian-7M
dataset [36]. Unless otherwise specified, we randomly sam-
ple the indicated number of instances from each dataset
during the training process. During training, we use Flash
Attention [8], bfloat16, and PyTorch FSDP [43] to accelerate
training efficiency.

A.2. Panel-of-Peers Models

Image Processing and Visual Representations We imple-
ment all image processing logic using the default image
transforms provided by torchvision and the TIMM li-
brary [38]. We normalize pixel values using the default Ima-
geNet normalization values. The default backbone employed
by all visual representations that we evaluate in this work
is a Vision Transformer [10] trained with the CLIP objec-
tive [32]; we extract patch features from the penultimate
layer, following LLaVA [23].

Vision-Language Projector We use a simple 2-layer GELU
MLP as the projector, which projects each patch indepen-
dently into the embedding space of the language model.

Language Model We choose three models to create the
Panel-of-Peers: Vicuna-7B [6], Mistral-7B [14], and -8B [2].
In order to combine the projected visual patch embeddings,
we perform simple sequence-wise concatenation by placing
the patch embeddings before the text embeddings.

A.3. Evaluation benchmarks

Systemic evaluations of the Panel-of-Peers regarding Gen-
eral VQA, knowledge, Chart&OCR, Hallucination, and
Vision-Centric capabilities have been conducted. The bench-
marks and datasets used are listed in Table A.2. During the
evaluation, we use VLMEvaKit [11] as our primary evalua-
tion toolkit.

A.4. Prompt Template

To evaluate model-generated responses within our Panel-
of-Peers (PoP) framework, we designed a detailed prompt
template to guide models in rating responses. This prompt
was central to generating pseudo-rewards, which serve as
feedback signals to enable self-improvement iterations. Each
model evaluated the outputs of its peers based on a set of
predefined criteria and aggregated their results using an en-
semble strategy to achieve consensus. The prompt comprises
three main components: System Prompt, Evaluation Criteria,
and Rating Guidelines. It is structured as follows:
• System Prompt: The model is instructed to act as an

expert evaluator tasked with assessing the quality of a
response provided to a user’s question. Both the question
and its related image are provided for context.

• Evaluation Criteria: Responses are evaluated across five
dimensions on an ordinal Likert scale:
1. Helpfulness: Utility of the response in addressing the

user’s query (1 to 5 scale).
2. Correctness: Accuracy and factuality of the response

(1 to 5 scale).
3. Coherence: Logical consistency and clarity of the re-

sponse (1 to 5 scale).
4. Complexity: Level of language sophistication, ranging

from simple to expert-level (1 to 5 scale).
5. Verbosity: Appropriateness of detail and conciseness

(1 to 5 scale).
• Rating Guidelines: Models receive detailed explanations

for scoring each dimension. For instance, a rating of 5 in
Helpfulness indicates complete alignment with the user’s
intent, while a 1 represents a failure to address the query
effectively. Similarly, Coherence is rated based on logi-
cal flow, with a 1 indicating substantial contradictions or
redundancy.

• Output Format: To standardize results, models are in-
structed to provide evaluations in a strict JSON schema
format, including scores for each criterion.

This prompt enabled consistent and systematic evaluation
of the model-generated responses, ensuring that pseudo-
rewards were aligned with the evaluation objectives outlined
in our PoP framework.

B. Additional Experiments
B.1. Comparison with State of the Art

We compare against the top 49 models on the OpenVLM
leaderboard, highlighting the performance of our models



Prompt Template for Generating Responses from the Panel of Peers

[System Prompt]
You are an expert evaluation model. You are asked to evaluate the AI assistant’s response to a user’s question based on an
image. You will see the user’s question, the related image, and the AI’s response.

[Evaluation Criteria]
Please rate the response using a 5-point Likert scale across the following dimensions: Helpfulness, Correctness, Coherence,
Complexity, and Verbosity.

[Rating Guidelines]
- Helpfulness: Rate from 1 (not useful at all) to 5 (extremely helpful).
- Correctness: Score from 1 (completely incorrect) to 5 (fully correct and accurate).
- Coherence: Evaluate from 1 (completely incoherent) to 5 (perfectly coherent and clear).
- Complexity: Assess from 1 (basic, understandable by children) to 5 (expert level, specialized vocabulary).
- Verbosity: Judge from 1 (very concise) to 5 (highly detailed and verbose).

[Brief Definitions]
- Helpfulness relates to the utility of the response in addressing the user’s need.
- Correctness ensures the response is factual and free from errors.
- Coherence checks for logical flow and consistency in the response.
- Complexity reflects the sophistication of language and concepts used.
- Verbosity measures the brevity or expansiveness of the response.

Here is the question and the assistant response:
[Question]
{question}
[Assistant Response]
{response}

[JSON Output]
Your answer should look like this. Only output result in the following JSON schema format:
{“Helpfulness”: (int), “Correctness”: (int), “Coherence”: (int), “Complexity”: (int), “Verbosity”: (int) }

Figure A.1. Evaluating Synthetic Responses. We use the following prompt template, which is used to evaluate responses from the
Panel-of-Peers.

Stage I Stage II Stage III

Config Alignment SFT PoP

Training Hyper-Parameters

Optimizer AdamW AdamW AdamW
Learning Rate 2e-3 2e-5 6e-5
Weight Decay 0.0 0.0 0.0
Training Epochs 1 1 2
Warmup Ratio 0.003 0.003 0.003
Learning Rate Scheduler Cosine Cosine Cosine
Batch Size Per GPU 16 8 8
Maximum Token Length 2048 2048 2048
Unfreeze LLM ✗ ✓ ✓

Training Data

Dataset BLIP-LAION-CC-SBU LLaVA-Instruct-mix665k Sampled from Cambrian-7M

Data Size 558K 665K 3 ×300K
Data Type Pair Instruction Synthetic

Training Cost

GPU Device 8×NVIDIA A100-80GB 8×NVIDIA A100-80GB 8×NVIDIA A100-80GB
Training Time ∼6h ∼10h ∼90h

Table A.1. Training recipes for PoP. The three training stages are introduced in Section 3. Stage I: Alignment training, Stage II:
Instruction Tuning, Stage III: Panel-of-Peers Learning.

using PoP. Our models include PoP-Vicuna, PoP-Mistral,
PoP-LLaMA3, and their single-try counterparts, which are

evaluated in 15 benchmarks against a broad spectrum of
state-of-the-art methods.



Capability Dataset Task description Eval Split Metric

General VQA
MM-Vet [41] Multi-disciplinary QA - GPT-4 Eval [41]
MMBench [24] Multi-disciplinary QA dev GPT-3.5 Eval [24]
SEED-Bench [17] Multi-disciplinary QA - Multi-choice Acc

Knowledge

AI2D [15] Science Diagrams test Multi-choice Acc
MMMU [42] College-level Multi-disciplinary val Multi-choice Acc
MMStar [4] Misc Multi-disciplinary - Multi-choice Acc
MathVista [27] General Math Understanding min GPT-4 Eval
ScienceQA [26] High-school Science val Multi-choice Acc

Chart&OCR

ChartQA [28] Chart Understanding test Relaxed Accuracy
TextVQA [34] OCR; Reasoning val VQAScore
OCR-Bench [25] OCR; Multi-disciplinary - Acc
OCRVQA [29] Document OCR TESTCORE Acc

Hallucination
POPE [20] Yes/No Hallucinations - Acc, F1-score
HallusionBench [12] Visual Hallucination - Acc, F1-score

Vision Centric RWQA [39] Real-world QA dev Multi-choice Acc

Table A.2. Overall descriptions of the evaluation benchmarks for evaluating capabilities, including GeneralVQA, Knowledge, Chart&OCR,
Hallucination and Vision Centric Benchmarks.
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Figure A.2. Learning a New Skill from Peers (OCR). We start with a model with very limited OCR knowledge (≈ 0%) and use PoP to
iteratively teach OCR skills. The performance is evaluated across multiple categories, including Chart & OCR, General Knowledge, Math &
Science, Hallucination, and Vision-Centric tasks.

Our best-performing models, PoP-LLaMA3 and mt-PoP-
LLaMA3, achieve an average score of 56.3% and 59.7%,
starting from a score of 48.9%. Compared to proprietary
models like GPT4-o [30] and Gemini-1.5 [35], our models
lag behind approximately 20 percentage points in perfor-
mance. A similar gap is observed when compared with open-
source state-of-the-art models, such as Qwen2-VL-72B [37],
InternVL2-Llama3-76B [5], and NVLM-D-72B [7]. Com-
pared to models of the same size category but trained on

significantly more data and higher-resolution inputs, our
best-performing models lag behind the recently released
Qwen2-VL-7B [37], the LLaVA-OneVision family [18], and
the Molmo family [9] by approximately 10 percentage points.
Compared to models of the same size category trained on
similar budgets, our best-performing model surpasses all the
LLaVA-NeXT family [22] except for models larger than 30B
by approximately 5 percentage points. We remark that our
models use 224x224 pixels as the input resolution compared
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Figure B.1. Evaluation results of our approach on 15 selected benchmarks in the OpenVLM Leaderboard. The figure displays 49
selected LVLMs (until 2024.10.30) in descending order of average score. When calculating the average score, the scores of each benchmark
are normalized to the range of 0 to 100.

to 768x768 pixels of the NeXT family.
These results demonstrate the efficacy of our approach

in using peer evaluations to improve model performance,
effectively increasing the average score by approximately
12% compared to the original LLaVA-1.5-7b model. Fig-
ure B.1 illustrates a comparative analysis of the top 49 mod-
els on the OpenVLM leaderboard [11], highlighting the per-
formance of our models using peer-to-peer learning.

B.2. Extra Results on Learning and Ability from
Scratch

In addition to the ablation study presented in the main
manuscript, where we evaluated the ability of the Panel-of-
Peers (PoP) framework to teach a model OCR capabilities,
we expanded the analysis to include the performance of
the OCR-Dumb model across other benchmark categories.
Figure A.2 provides a comprehensive view of the model’s

iterative performance improvement across five categories:
Chart&OCR, General Knowledge, Math and Science, Hallu-
cination, and Vision-Centric tasks.

The experiment began with an OCR-Dumb model trained
with varying proportions of OCR knowledge (0%, 25%,
50%, 75%, and 100%). Interestingly, the results demonstrate
that as OCR knowledge increases, the model’s performance
steadily improves not only in OCR-related tasks but also in
other categories. Notable observations include:

• Chart and OCR: Performance rises sharply with in-
creased OCR knowledge, validating the importance of
reading capabilities for interpreting structured visual data.

• General Knowledge: Gains in this category suggest that
improved text recognition contributes to better multimodal
understanding and reasoning.

• Math and Science: Enhanced OCR capabilities positively
impact tasks involving numerical and scientific reasoning,



Capability Benchmark
Iteration 0 Iteration 1 Iteration 2 Iteration 3

GeneralVQA
MMBench [24] 62.4 66.5 65.6 65.3 65.5 68.7 65.7 66.1 69.9 67.0 67.4 71.3
MM-Vet [41] 21.1 32.9 26.2 24.5 31.9 29.5 29.5 31.6 31.9 30.5 32.5 33.0
SEED-Bench [17] 64.6 65.8 61.6 68.7 61.6 65.5 65.1 66.2 66.9 66.8 67.9 68.6

Knowledge

†AI2D [15] 62.0 55.5 61.1 66.0 59.1 65.1 65.8 60.2 66.1 64.6 62.9 71.4
MMMU [42] 32.7 35.7 33.6 35.5 38.8 36.6 39.1 36.4 36.9 39.9 37.1 37.6
MMStar [4] 36.4 33.1 38.6 37.4 34.0 39.6 40.8 39.6 40.2 41.5 40.9 45.3
MathVista [27] 30.3 25.6 30.3 33.1 31.2 33.1 34.9 33.8 35.5 35.0 34.9 37.7
†ScienceQA [26] 58.0 66.8 71.2 62.4 67.1 73.1 66.1 71.9 75.4 68.0 74.0 77.6

Chart&OCR

†ChartQA [28] 39.6 31.9 40.4 42.4 42.7 43.3 46.3 45.1 45.7 48.4 47.1 47.8
†TextVQA [34] 44.9 45.5 44.9 48.4 49.0 48.4 50.2 50.3 49.3 52.2 52.3 51.2
OCR-Bench [25] 33.6 31.8 33.9 34.7 33.8 35.0 39.5 38.7 38.3 41.3 41.6 44.5
OCRVQA [29] 59.7 60.6 57.7 62.7 63.6 60.6 60.9 62.4 61.7 61.4 62.9 62.2

Hallucination
POPE [20] 87.0 86.1 84.8 85.1 86.8 83.0 86.2 86.4 84.1 86.1 86.3 85.0
HallusionBench [12] 30.4 27.6 32.4 34.7 32.6 37.1 30.7 31.7 30.7 28.2 31.8 36.5

Vision Centric RWQA [39] 53.1 54.8 48.9 54.6 53.2 50.3 53.0 49.6 52.9 53.4 50.0 53.3

Average 47.7 48.0 48.7 50.4 50.1 51.2 51.6 51.3 52.4 51.2 51.6 53.7

Table B.1. Evaluation on 15 vision-language benchmarks. We compare the performance of the single-try Panel-of-Peers (st-PoP). We
have separated the benchmarks into five categories. Columns show three training iterations for = PoP-Mistral, = PoP-Vicuna, and
= PoP-LLaMA3. † indicates that the training set has been observed in our data mixture.

where understanding text is critical.
• Hallucination: Improvements here indicate that OCR

knowledge helps reduce misalignments and inconsisten-
cies in model outputs at the beginning. However, this im-
provement plateaus if the model starts with more OCR
knowledge.

• Vision-Centric: Even tasks not directly reliant on OCR
knowledge show gradual improvement, though to a lesser
extent, with more OCR knowledge. This emphasizes the
holistic impact of PoP training.
These results show the applicability of Peer-to-Peer Learn-

ing, demonstrating its ability to transfer knowledge, includ-
ing OCR, while simultaneously increasing performance in
various multimodal tasks. This highlights the effectiveness
of PoP as a self-improvement mechanism, enabling models
to iteratively learn new capabilities and address their initial
weaknesses.

B.3. Extra Details on the Panel-of-Peers Ensemble
as a Zero-Shot Evaluator

We present more details on the experiments in Section
5.2. For models with more than 3B parameters, we in-
cluded Phi-3-Vision [1], BLIP3 [40], and Paligemma [3].
In the more than 7B range, we selected LLaVA-NeXT-
Llama3, LLaVA-NeXT-Mistral, LLaVA-NeXT-Vicuna [22],

and Idefics2 [16]. For models exceeding 10B parameters,
we picked CogVLM2-Chat [13], LLaVA-NeXT-Vicuna-
13B [22], and Llama-3.2-Vision [2]. For models with more
than 30B parameters, we incorporated InternVL2-26B, In-
ternVL 1.5-26B [5], Cambrian-34B [36], and LLaVA-NeXT-
Yi [22]. Each panel performed response regeneration and
evaluations. However, this is an evaluation-only method,
enabling the creation of an ensemble using their consensus.

B.4. Extra Results of Our Trained Models

We present the specific scores of each of the members of the
panel of peers, outlined in Table 2 of the main manuscript,
where we presented the average scores of the whole panel.
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[16] Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor
Sanh. What matters when building vision-language models?
arXiv preprint arXiv:2405.02246, 2024. 5

[17] Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang,
Ruimao Zhang, and Ying Shan. Seed-bench: Benchmark-
ing multimodal large language models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13299–13308, 2024. 3, 5

[18] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li,
Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei Liu, and Chun-
yuan Li. Llava-onevision: Easy visual task transfer. arXiv
preprint arXiv:2408.03326, 2024. 3

[19] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip:
Bootstrapping language-image pre-training for unified vision-
language understanding and generation. In International
conference on machine learning, pages 12888–12900. PMLR,
2022. 1

[20] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao, and
Ji-Rong Wen. Evaluating object hallucination in large vision-
language models. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023. 3, 5

[21] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee.
Improved baselines with visual instruction tuning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 26296–26306, 2024. 1

[22] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang,
Sheng Shen, and Yong Jae Lee. Llava-next: Improved reason-
ing, ocr, and world knowledge, 2024. 3, 5

[23] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. Advances in neural information
processing systems, 36, 2024. 1

[24] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang
Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He,
Ziwei Liu, et al. Mmbench: Is your multi-modal model an
all-around player? arXiv preprint arXiv:2307.06281, 2023. 3,
5

[25] Yuliang Liu, Zhang Li, Biao Yang, Chunyuan Li, Xucheng
Yin, Cheng-lin Liu, Lianwen Jin, and Xiang Bai. On the
hidden mystery of ocr in large multimodal models. arXiv
preprint arXiv:2305.07895, 2023. 3, 5

[26] Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei
Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and
Ashwin Kalyan. Learn to explain: Multimodal reasoning via
thought chains for science question answering. Advances in
Neural Information Processing Systems, 35:2507–2521, 2022.
3, 5

[27] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li,
Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel
Galley, and Jianfeng Gao. Mathvista: Evaluating mathemat-
ical reasoning of foundation models in visual contexts. In
The Twelfth International Conference on Learning Represen-
tations, 2024. 3, 5

[28] Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. Chartqa: A benchmark for question
answering about charts with visual and logical reasoning. In
Findings of the Association for Computational Linguistics:
ACL 2022, pages 2263–2279, 2022. 3, 5



[29] Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and
Anirban Chakraborty. Ocr-vqa: Visual question answering by
reading text in images. In 2019 international conference on
document analysis and recognition (ICDAR), pages 947–952.
IEEE, 2019. 3, 5

[30] OpenAI. Gpt-4o system card, 2024. Accessed: 2024-09-30.
3

[31] Vicente Ordonez, Girish Kulkarni, and Tamara Berg. Im2text:
Describing images using 1 million captioned photographs.
Advances in neural information processing systems, 24, 2011.
1

[32] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 1

[33] Christoph Schuhmann, Richard Vencu, Romain Beaumont,
Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo
Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m:
Open dataset of clip-filtered 400 million image-text pairs.
arXiv preprint arXiv:2111.02114, 2021. 1

[34] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xin-
lei Chen, Dhruv Batra, Devi Parikh, and Marcus Rohrbach.
Towards vqa models that can read. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 3, 5

[35] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui
Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a
family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023. 3

[36] Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo,
Manoj Middepogu, Sai Charitha Akula, Jihan Yang, Shusheng
Yang, Adithya Iyer, Xichen Pan, et al. Cambrian-1: A fully
open, vision-centric exploration of multimodal llms. arXiv
preprint arXiv:2406.16860, 2024. 1, 5

[37] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan,
Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge,
Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men,
Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang Lin.
Qwen2-vl: Enhancing vision-language model’s perception of
the world at any resolution. arXiv preprint arXiv:2409.12191,
2024. 3

[38] Ross Wightman. Pytorch image models. https:
/ / github . com / rwightman / pytorch - image -
models, 2019. 1

[39] x.ai Team. Grok-1.5 vision preview, 2024. 3, 5
[40] Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan,

Senthil Purushwalkam, Honglu Zhou, Viraj Prabhu, Yu-
tong Dai, Michael S Ryoo, et al. xgen-mm (blip-3): A
family of open large multimodal models. arXiv preprint
arXiv:2408.08872, 2024. 5

[41] Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan Wang.
Mm-vet: Evaluating large multimodal models for integrated
capabilities. In Forty-first International Conference on Ma-
chine Learning, 2024. 3, 5

[42] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi
Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren,
Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
modal understanding and reasoning benchmark for expert agi.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9556–9567, 2024. 3, 5

[43] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-
Chin Huang, Min Xu, Less Wright, Hamid Shojanazeri, Myle
Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling
fully sharded data parallel. arXiv preprint arXiv:2304.11277,
2023. 1

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	. Implementation Detatils
	. Training Hyperparameters
	. Panel-of-Peers Models
	. Evaluation benchmarks
	. Prompt Template

	. Additional Experiments
	. Comparison with State of the Art
	. Extra Results on Learning and Ability from Scratch
	. Extra Details on the Panel-of-Peers Ensemble as a Zero-Shot Evaluator
	. Extra Results of Our Trained Models


