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Figure 1. On-axis and off-axis PSFs rendered from a Cooke
Triplet lens. We display PSFs generated by the incident angle
from 0 to 20 degrees.

In this supplemental document, we present additional re-
sults of the proposed differentiable wave optics simulator to
support our findings.

1. Wave Optics Rendering

In this section, we first demonstrate point spread functions
(PSFs) and wavefront maps rendered from different incident
angles, apertures, and lens configurations. We also show
the measurement rendered by interpolating wave-rendered
PSFs and analyze the impact of interpolation. Moreover, we
analyze the computation efficiency under different physics
models.

1.1. PSFs across Different FoVs
Fig. 1 and 2 illustrate the PSFs rendered across incident
angles from 0° to 20° for Cooke Triplet and singlet lenses,
respectively. The results demonstrate that our simulator ef-
fectively captures variations in PSFs due to changing in-
cident angles. When increasing the incident angle, more
astigmatism and coma effects appear on the PSFs. Notably,
compared with the PSFs of the Cooke Triplet lens, off-axis
aberrations, and coma are significantly more pronounced in
the PSFs of the singlet lens. This result highlights the dif-

Figure 2. On-axis and off-axis PSFs rendered from a singlet
lens. We display PSFs generated by the incident angle from 0 to
20 degrees.

(a) On-axis, in-focus (b) Off-axis, in-focus

(c) On-axis, out-of-focus (d) Off-axis, out-of-focus

Figure 3. The phase variations on the wavefront maps under
different situations. As the system becomes off-axis or out-of-
focus, the phase changes more rapidly on the wavefront map. Unit:
mm.

ference between the aberration degree of these two types of
lenses.
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Figure 4. PSFs rendered with different aperture radii and
physics models. With a larger aperture radius (0.3 mm), the spot
size of wave-PSF and Ray-PSF becomes closer to each other.

1.2. Wavefront Maps
We present wavefront maps for a singlet lens under vari-
ous conditions in Fig. 3. Fig. 3a shows that the wavefront
map generated at on-axis and in-focus configuration has the
slightest phase variation. In contrast, Fig. 3b shows that off-
axis rays introduce significant aberrations, leading to phase
shifts spanning over five wavelengths and causing defocus
blur in the corresponding PSF. Additionally, by shifting the
sensor, we make the system out-of-focus and display PSFs
in Fig. 3c and 3d. As observed, the phase variations in
the wavefront maps are more pronounced for both on-axis
and off-axis beams, highlighting the degree of defocusing.
These findings validate that the phase variation on the wave-
front map reflects focusing conditions. By accurately mod-
eling phase variations, our simulator is capable of modeling
aberration and diffraction in various lens configurations.

1.3. PSFs Rendered under Different Aperture Sizes
Figure 4 illustrates how increasing the aperture radius re-
duces the diffraction spot size. When the aperture radius
is 0.1 mm, because the system is diffraction limited, the
spot size of wave-rendered PSF is much greater than that
of ray-rendered PSF. As the aperture radius increases to 0.3
mm, the diffraction becomes weaker, and geometric spot
size increases, bringing the diffraction and aberration lim-
its closer. These findings confirm that the disparity between
ray-trained and wave-trained systems depends on aperture
size: a larger aperture radius diminishes the differences be-
tween PSFs rendered by ray optics and wave optics, indicat-

Figure 5. The diffraction and aberration (geometric) limits un-
der different aperture radii. As the aperture radius increases, the
two limits gradually converge into the same value. The values are
measured from a Cooke triplet lens.

(a) Pixel width: 1um. (b) Pixel width: 5 um.

Figure 6. PSFs rendered with different pixel widths. The
diffraction effects become less obvious when using a coarser res-
olution.

ing reduced sensitivity of system optimization to diffraction
effects.

Figure 5 illustrates the change of diffraction and geomet-
ric limits with aperture radius. For an aperture radius of 0.1
mm, the diffraction limit significantly exceeds the aberra-
tion limit. Therefore, the system has enough flexibility to
adjust its configuration, sacrificing aberration and achiev-
ing better diffraction performance. However, as the aper-
ture radius increases, the diffraction and geometric limits
converge, reducing the potential gains from this trade-off.
Consequently, systems with larger apertures exhibit dimin-
ished flexibility in optimizing between diffraction and aber-
ration performance.

1.4. PSFs with Different Pixel Sizes
We vary pixel size to investigate the dependency of lens de-
sign solutions on pixel area and summarize results in Table
1. As observed, when the pixel size is 1 µm, ray-trained
and wave-trained systems have a large disparity. However,



Table 1. Reconstruction performance on wave optics rendered
measurements (RMSE / LPIPS)

PS Training physics MF CLWave Ray
Aperture radius: 0.1 mm

1 0.106 / 0.265 0.148 / 0.772 8.689 0.869
5 0.099 / 0.176 0.107 / 0.437 1.906 0.905

10 0.071 / 0.060 0.074 / 0.116 0.229 0.999
Aperture radius: 0.3 mm

1 0.104 / 0.230 0.112 / 0.483 0.015 0.999
5 0.069 / 0.064 0.071 / 0.065 0.303 0.999

10 0.062 / 0.059 0.068 / 0.064 0.132 0.999
PS: pixel size (unit: µm), MF: Mismatch between F-numbers
CL: Cosine similarity between normalized and vectorized lens curvatures
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Figure 7. Examples of rendered PSFs and measurement. Our
simulator accurately captures aberration and diffraction in on-axis
and off-axis PSFs from (a) singlet lens and (b) Cooke triplet lenses.

as the pixel size increases, the disparity diminishes. No-
tably, we evaluate the mismatch between lenses by vector-
izing their curvatures and measure the cosine similarity, ab-
breviated as CL in Table 1.

As visualized in Fig. 6, when increasing the pixel width
from 1 to 5 µm, the PSF structures become coarser, with
diffraction effects appearing less pronounced due to re-
duced pixel resolution. This observation aligns with our
findings that smaller pixel sizes enhance the sensitivity of
system optimization to wave optics, underscoring the im-
portance of wave optics modeling for achieving high physi-
cal accuracy in imaging systems with high pixel resolutions.

Table 2. The expected and reference reconstruction performance
of system trained by a subset of PSFs (RMSE / LPIPS)

NT Expected Reference → (s) ← (s)
Singlet Lens

9 0.069 / 0.138 0.098 / 0.226 2.21 7.46
25 0.077 / 0.125 0.082 / 0.176 3.94 17.14
81 0.079 / 0.154 0.082 / 0.159 11.09 52.39
289 0.084 / 0.164 0.084 / 0.164 31.26 176.72
969 0.082 / 0.149 0.082 / 0.149 113.55 679.97

Cooke Triplet Lens
9 0.106 / 0.264 0.106 / 0.265 3.08 10.18

25 0.101 / 0.240 0.101 / 0.241 5.92 23.81
81 0.101 / 0.240 0.101 / 0.241 16.51 72.41
289 0.102 / 0.242 0.102 / 0.243 55.53 253.7
969 0.089 / 0.234 0.089 / 0.234 198.13 975.2
NT : The number of PSFs used in approximation and optimization
→ (←): Time elapsed in the forward (backward) propagation

1.5. Measurement Rendering

We simulate PSFs and measurements obtained from sin-
glet and Cooke triplet lenses in Fig. 7. The singlet lens
demonstrates prominent effects from both diffraction and
off-axis aberrations. The on-axis PSF shows clear diffrac-
tion fringes, while the off-axis shows a combination of
coma and astigmatism with clear diffraction effects. The
Cooke triplet lens, by nature of its optimized design, drasti-
cally reduces aberrations. These results demonstrate how
our model faithfully renders images for both aberration-
limited and diffraction-limited systems, enabling end-to-
end optimization of lenses across both regimes.

1.6. Interpolated Measurements

Figure 8 illustrates example measurements rendered with
varying the number of PSFs in interpolation. For measure-
ments rendered from the Cooke triplet lens, the rendering
accuracy remains consistent regardless of the number of
PSFs used in interpolation. In contrast, the rendering ac-
curacy for the singlet lens strongly depends on the number
of PSFs, with noticeable artifacts appearing when interpo-
lation is performed using only 9 PSFs. These results em-
phasize the importance of selecting an adequate number of
PSFs, particularly for lenses with limited aberration control.

In addition to computing the RMSE between sparsely
and densely rendered PSFs, we also evaluate the robustness
of systems optimized using a subset of PSFs. Particularly,
we optimize the system using 9 to 969 PSFs, and measure
expected and reference reconstruction performance defined
as follows: Expected performance is evaluated on measure-
ments rendered by the same number of PSFs used in train-
ing, and reference performance is evaluated on measure-
ments rendered by 969 PSFs, the maximum achievable un-



(a) 9 PSFs, singlet. (b) 25 PSFs, singlet. (c) 81 PSFs, singlet. (d) 289 PSFs, singlet. (e) 969 PSFs, singlet.

(f) 9 PSFs, triplet. (g) 25 PSFs, triplet. (h) 81 PSFs, triplet. (i) 289 PSFs, triplet. (j) 969 PSFs, triplet.

Figure 8. Measurements interpolated by different number of PSFs. We generate measurements from 9 to 969 of interpolated PSFs in
singlet and triplet lenses. As the number of PSFs increases, the measurements converge to the same appearance.

der hardware constraints.
As summarized in Table 2, optimizing a Cooke Triplet

lens system with just 9 PSFs results in a narrow disparity be-
tween expected and reference reconstruction performance.
Adding more PSFs further improves both metrics, but they
remain closely aligned. In contrast, a singlet lens system
optimized with only 9 PSFs tends to yield overly optimistic
results, leading to significant degradation in reference per-
formance. The disparity arises from the limited capacity of
the singlet lens to correct off-axis aberrations, making sys-
tems trained with isoplanatic assumptions less robust. In
comparison, due to a superior aberration control, the Cooke
Triplet lens allows robust optimization even with a mini-
mal PSF count. These findings underscore the sampling
requirements for optimizing various lens types to balance
efficiency and accuracy.

1.7. Computation Efficiency

We plot the time elapsed in forward (dash line) and back-
ward (solid line) propagation under different physics mod-
els in Fig. 12. As we can see, due to the higher computa-
tional costs, wave optics take around twice and four times
longer than ray optics in forward and backward propaga-
tion, respectively. The analysis demonstrates the need to al-
leviate the computational costs of driving back-propagation
on differentiable wave optics.

2. Lens Architecture

In this section, we present further analysis of the lens archi-
tecture optimized under different physics models and the
associated PSFs.

Figure 9. Time elapsed in rendering. We measure both forward
(dash line) and backward (solid line) propagation using wave (W,
blue) and ray (R, red) optics. Because of considering the interac-
tions of every ray with every sensor grid, wave optics take longer
than ray optics in both forward and backward propagation.

2.1. Change of F-Number in Optimization

To understand the divergence in optimization paths between
the wave-trained and ray-trained lens, we plot the trend of
the F-number of lenses over successive iterations in Fig. 10.
During wave optics-based optimization, the system progres-
sively reduces the F-number to control the PSF spot size. In
contrast, under ray optics optimization, where the F-number
has little influence on PSF structures, it remains close to the
initial value throughout the training epochs.



Figure 10. The change of F-number in end-to-end optimiza-
tion. By pursuing a smaller diffraction spot size, the wave-trained
system keeps reducing its F-number in optimization. On the other
hand, the ray-trained system pursues a small geometric spot size,
and the F-number remains around a constant.
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Figure 11. Off-axis PSFs of end-to-end optimized systems. A
wave-trained system sacrifices acceptable geometric RMS spot (a)
size to achieve weaker diffraction (c). On the other hand, although
a ray-trained system minimizes the geometric RMS spot size (b), it
neglects the diffraction blur (d), which is the actual limiting factor
in PSF.

2.2. Disparity between Off-Axis PSFs from Wave-
Trained and Ray-Trained Systems

In Fig. 11, we compare off-axis PSFs generated by triplet
lenses optimized with wave optics versus ray optics. The
ray-optimized lens demonstrates superior control over ge-
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Figure 12. An analysis of ray-trained and wave-trained Cooke
Triplet lens. With different physics models in end-to-end opti-
mization, Cooke Triplet lens adapts to different architectures. The
ray-trained one yields minimal geometric RMS spot size, while the
wave-trained one pursues shorter effective focal length for better
diffraction performance. When diffraction is introduced to testing,
the wave-trained system exhibits better robustness to wave optics
effects.

ometric spot size. However, when wave optics effects are
introduced during testing, the wave-optimized lens exhibits
a superior ability to mitigate diffraction-related spot size.
These results further underscore the importance of account-
ing for wave optics in end-to-end optimization, highlighting
the overly optimistic performance estimates that can arise
from neglecting diffraction effects.

2.3. Cooke Triplet Lens Optimization
Similar to Fig. 7 of the main article, we compare Cooke
Triplet lenses optimized using ray optics and wave optics.
As observed, the two optimization approaches lead to dis-
tinct lens configurations and network adaptations. The ray-



Table 3. Classification accuracy on wave optics rendered measure-
ments

Pixel size (um) Training physics MF CLWave Ray
Aperture radius: 0.1 mm

1 72.0% 48.5% 11.67 0.800
5 72.8% 65.8% 3.177 0.979
10 73.6% 67.7% 0.435 0.999

Aperture radius: 0.3 mm
1 71.2% 63.1% 0.252 0.999
5 73.4% 67.5% 0.104 0.999
10 76.4% 68.7% 0.120 0.999

optimized system focuses on minimizing the RMS spot
size, but because diffraction effects are not accounted for
during training, the network remains sensitive to diffrac-
tion blur. In contrast, the wave-optimized system miti-
gates diffraction blur by modifying both the optical de-
sign and network architecture, resulting in a shorter ef-
fective focal length (EFL). This adaptation not only sup-
presses diffraction in the PSF but also enables the network
to reconstruct intensity from diffraction-blurred measure-
ments. When evaluated under wave-optics-based render-
ing, the wave-trained system demonstrates greater robust-
ness compared to the ray-trained one.

2.4. Optimized Lens Recipe
We provide the recipe of wave-optimized six layer aspheri-
cal lens displayed in Fig. 1 in the main paper in Table 4 and
5 for reference. We include the radius, curvatures, materi-
als, thickness, and aspherical parameters at each surface.

3. Image Classification
To examine the impact of the physics model on semantic in-
formation quality in rendering, we conduct end-to-end opti-
mization for image classification. The training dataset con-
sists of 10 image classes from ImageNet [3], with 800 im-
ages used for training and 100 images for testing per class.
We utilize ResNet18 [4] for class label estimation and em-
ploy cross-entropy loss to drive the joint optimization of
both the lens and the network.

Specifically, the experiments are conducted on a Cooke
Triplet lens across different physics models, aperture radii,
and pixel sizes, with classification performance consistently
evaluated using measurements rendered with wave optics.

3.1. Quantitative Analysis
As summarized in Table 3, for an aperture radius of 0.1 mm,
systems optimized by ray optics and wave optics have no-
ticeable differences in F-number and lens architecture. The
ray-trained system experiences a significant drop in classi-
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Pred: Trailer truck (X)

Grad-CAM++ Response, a.u. 
0 1

Train: ray; Test: ray Pred: Candle (O)

Pred: Orange (X)

Measurements Heat map

Train: ray; Test: wave

Train: wave; Test: wave Pred: Banana (O)Pred: Candle (O)

Figure 13. Examples of classification results and associated
heat maps. For each image, we display its measurement from
the system, and associated heat map visualized by GradCAM++.
The ray-trained system can only correctly identify key informa-
tion from sharp measurements generated by ray optics. When we
consider diffraction blur, the measurement becomes blurry and the
network fails to capture the correct features. On the other hand,
the wave-trained system can identify features from measurements
suffered from diffraction blur and provide accurate classification.

fication accuracy when diffraction is accounted for in in-
ference. This performance drop diminishes as pixel size
increases, reducing the structural disparity between wave-
PSFs and ray-PSFs. Additionally, with a larger aperture
radius of 0.3 mm, the differences in F-number and classi-
fication performance between ray-trained and wave-trained
systems also become less pronounced, reducing the impact
of ignoring diffraction during training.

3.2. Qualitative Analysis

We also conduct a qualitative analysis of the impact of dif-
ferent physics models used for training lenses with a 0.1
mm aperture radius. Specifically, we employ Grad-CAM++
[2], a technique for network interpretation, to visualize fea-
ture extraction during classification. In Fig. 13, we present
sample measurements alongside their associated heatmaps.
As illustrated in the top row, for the ray-trained system, the
network is trained to capture features from sharp images.
Consequently, when tested with ray optics, the network suc-
cessfully identifies all necessary features for classification.
However, as shown in the middle row, once diffraction blur
is introduced to the measurement, the ray-trained network
misidentifies features and produces erroneous classification



Index Type Radius (mm) RoC (mm) k Material Thickness (mm)

1 Aperture 0.1 - - Air 0.1009
2 Aspheric 1.19 17.6816 4.3395 PMMA 0.8639
3 Aspheric 1.45 -22.5285 8.1054 Air 0.3493
4 Aspheric 1.565 -18.4637 4.5904 OKP4 0.7976
5 Aspheric 1.85 -36.7507 -10.4875 Air 0.1721
6 Aspheric 2.095 26.5022 0.6336 COC 0.8421
7 Aspheric 2.095 -23.6907 -1.6301 Air 0.6343
8 Aspheric 2.065 -23.3454 0.1592 Polycarb 0.4525
9 Aspheric 2.335 -63.9289 -82.4477 Air 0.4747
10 Aspheric 2.35 -79.6274 -19.3968 COC 0.7123
11 Aspheric 2.455 -18.4009 8.2904 Air 0.7348
12 Aspheric 2.585 -14.3779 -0.938 COC 0.9845
13 Aspheric 3.48 13.3459 7.9706 Air 0.9717

Table 4. Lens surface specifications.

Index a2 a4 a6 a8 a10 a12

2 -0.0091 -0.0193 -0.0016 -0.0005 -0.0003 -0.0003
3 -0.0416 -0.0187 0.0008 0.0002 0.00002 -0.00002
4 -0.1321 0.0006 0.0012 0.00001 -0.00002 -0.0000006
5 -0.0735 -0.0074 -0.0016 -0.0002 -0.00001 -0.000003
6 0.1032 -0.001 0.0002 0.00005 0.000005 0.000003
7 -0.0709 -0.00008 0.0004 0.00004 0.000003 -0.000002
8 -0.0785 -0.0156 -0.0008 -0.00007 -0.000005 0.00000095
9 -0.0259 0.0006 -0.0009 -0.0001 -0.000007 -0.0000008

10 0.0554 -0.0072 0.00001 0.00001 -0.000015 -0.000004
11 -0.095 0.001 -0.0004 -0.00008 -0.000002 0.000004
12 -0.0079 -0.006 -0.0006 -0.00002 0.000003 0.0000008
13 0.0366 -0.0082 -0.0001 0.00001 0.000002 -0.0000003

Table 5. Aspheric surface coefficients on different lens surfaces.

results. In contrast, as shown in the bottom row, when
diffraction is considered during optimization, the lenses are
driven to a lower F-number to mitigate the diffraction blur,
and the network is aware of diffraction in feature extraction.
This results in less blurry measurements and more accurate
feature detection, as demonstrated in the right column. This
analysis reaffirms the critical importance of incorporating
diffraction in end-to-end optimization.

4. Free-Form Optics

In addition to lens design, we apply our wave optics model
to an inverse rendering experiment on freeform optics [1].
Specifically, we illuminate the free form optics surface with
coherent plane wave, modeling the interactions between co-
herent rays, and compute measurements.

4.1. Measurement Rendering

Provided the discrete height map at the given coordinates,
we use two geometric profiles, linear meshing, and a B-
spline model, to characterize the surface and render PSFs.
For each model, we display on-axis and off-axis measure-
ments generated by our simulator in Fig. 14. As we can
see, if we directly mesh the surface by linearly interpolating
the heights over the surface, visible artifacts appear, espe-
cially for off-axis measurements. On the other hand, as ob-
served in Fig. 14c and 14d, by adopting B-Spline as fitting
geometry profile to the height maps, we obtain smoother
measurements with fewer artifacts. The results demonstrate
that the proposed simulator is capable of modeling the struc-
tures and off-axis distortions in wave optics propagation in
freeform optics.



(a) Meshed, On-axis PSF. (b) Meshed, Off-axis PSF.

(c) BSpline, On-axis PSF. (d) BSpline, Off-axis PSF.

Figure 14. Measurements taken from a freeform optics surface
using different geometric profiles in surface fitting. We illumi-
nate a freeform optical surface and compare non-grid interpolation
parameterized by meshing or BSpline. With B-spline parametriza-
tion, the freeform optics provides smoother measurements with
fewer artifacts.

(a) Initial (b) Optimized (c) Reference 

(d) Initial (e) Optimized (f) Reference 

Figure 15. Recovering a freeform optics surface from its mea-
surement. Setup: A monochromatic plane wave is modulated by a
reference freeform optical surface (c), generating the correspond-
ing measurement (f). Starting from a randomly initialized surface
(a) and its associated measurement (d), our differentiable wave
optics model accurately captures coherent light interference dur-
ing propagation, enabling precise reconstruction of the surface (b)
and measurement (e). Top row: Surface profiles. Bottom row:
Corresponding measurements. Measurement field size: 0.3 mm2.
Surface size: 0.24 mm2.

4.2. Height Map Recovery
We recover the reference height map of a free form optical
element through differentiable rendering. In particular, we

first take a reference height map, illustrated in Fig. 15 (c),
and render its associated measurement visualized in Fig. 15
(f). Next, we start optimizing a randomly initialized optics
surface, shown in Fig. 15 (a), with associated measurements
shown in Fig. 15 (d). The surface optimization is driven
by the mean squared error between rendered and reference
measurements.

Figures 15 (b) and 15 (e) present the optimized height
maps and the corresponding measurement. As observed,
the optimized height map closely aligns with the reference,
and the rendered measurements accurately replicate the ref-
erence values.
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