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Figure 7. Importance of weight regularization. While the body
height is correct, without weight regularization, the fitting is prone
to converge at high BMI shape parameters.
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Figure 8. SHAPify is also capable of estimating shapes of subject
with high and low BMI values, which allows us to perform cus-
tomized pose estimation for diverse human subjects.

6. Implementation Details
6.1. SHAPify Details
In the optimization of SHAPify, we initialize the pose pa-
rameters ✓ as the rest pose (T-/I-pose) and the pelvis posi-
tion p to:

p = [
xp � cx

f
Z,

yp � cy

f
Z, Z], (11)

where f is the camera focal length and (xp, yp), (cx, cy) are
the pelvis pixels and camera center on the image, respec-
tively. Z is the depth of the pelvis, which we approximate
as Z = f · SWSMPL/SWkp. Note that SWSMPL is the
shoulder width of the SMPL mean shape, and SWkp is the
length of shoulder keypoints on the 2D image. This ap-
proximation holds because the horizontal line on the image
is not affected by the pitch angles of global orientation, and
we can assume that the roll and yaw angles of the pelvis
orientation � are typically small in the frame of rest poses.
We also initialize the roll and yaw angles to 0 and update
them with small learning rates.

In the regularization term of SHAPify, we calculate body
heights and weights from the SMPL body meshes. The
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Figure 9. Visualization of shape estimation errors on sequences
in EMDB. See also Tab. 3 for quantitative results.

heights (H(·)) are calculated as the distance between the
top of the head (Vertex# 411) to the center of feet (Vertex#
3439, 6839). The heights (W (·)) are the volume of human
body meshes multiplied by the body density (985 kg/m

3).
We use �� = 0.1, �h = 100, and �w = 10 if the body
measurements are available, and �� = 1, �h = 1, and
�w = 1 if not. Without using the body measurements, our
method achieved a 14mm joint error and a 13mm vertex
error (Tab. 3), which is only slightly higher than using the
body measurements. Moreover, we found the body weight
regularization term crucial. Without such a constraint, the
fitting is prone to converge to shapes with large bellies.
(See Fig. 7)

6.2. PointDiT Architecture and Training
We show the detailed network architecture of PointDit
in Fig. 11. More specifically, the PointDiT model contains
20 DiT blocks and is operated at a dimension of 512. We
use the frozen ViTBackbone [77] to extract 256⇥256 image
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Figure 10. Visualization of selected body surface points. Left:
We use the 238 vertices and 45 joints to fit the SMPL parameters.
Right: The fitted body mesh (in green color) is highly aligned with
the original ground-truth body mesh.

features of the shape of 16⇥16⇥1280 and heatmaps of the
shape of 64⇥64⇥17. We add the image features, heatmaps,
and positional embeddings together to obtain the final con-
ditional features c. Our body point clouds are made up of
45 SMPL joints and 238 vertices from the SMPL surface
(see Fig. 10). This was chosen by the accuracy of the Point
Fitter in NLF [61]. The point clouds used for diffusion are
with the shapes of 283 ⇥ 3, and we normalize the points
to zero mean and unit variance before adding noise. We use
the rectified flow formulation [13, 44] in the diffusion model
to reduce the number of denoising steps during inference,
as described in the main paper. Both conditional features
and point clouds are projected to 512-dimensional tokens
and fed into the transformer. In the output layer, we project
the tokens back to 3-dimensional points and de-normalize
them. The image conditional tokens are only used for self-
attention conditioning and are discarded in the final layer.

We train our PointDiT model using the synthetic BED-
LAM dataset. We apply standard data augmentations [2, 12]
to the provided image crops and ground-truth annotations.
Our training consists of two stages. In the first stage, we
set all conditional shape parameters � to zero, allowing the
model to focus on sampling body point clouds correspond-
ing to the conditional images. In the second stage, we learn
the correct body shape of point clouds using the ground-
truth shape parameters as conditions. For training, we uti-
lize a batch size of 512 images and set the learning rate to
10�5 with the AdamW optimizer. The training takes ap-
proximately 1 day for the first stage, with 12K iterations,
and another 2 days for the second stage, with 30K itera-
tions, on 8 NVIDIA V100 GPUs. The training scheduler
and reweighting factors follow the same configuration as in
Stable Diffusion 3 [13]. We employ a dropout rate of 0.05
for the image and shape conditioning.

6.3. Point Distillation and Body Fitting Details
In the body fitting stage, we can initialize pose ✓0 and global
orientation �0 with either our sampled points x0 or the re-
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Figure 11. Network architecture of PointDiT. Our point clouds
are made up of 45 SMPL joints and 238 vertices from the SMPL
surface. This was chosen in accordance with the accuracy of the
SMPL Fitter in NLF [61]. Hence, the point clouds are of 283-
dimensional. We use the rectified flow formulation [13, 44] in
the diffusion model to reduce the number of denoising steps as
described in the main paper.

sults from a regressor. To initialize the pelvis position p0,
we solve the weighted least squares problem by plugging
in ✓0,�0 to Eq. (10). Afterward, we optimize 100 iterations
per image with a learning rate of 3e�3 for optimizing ✓ and
1e� 3 for optimizing �,p with the AdamW optimizer. The
�data is set to 1.0 and the �prior is set to 100, (�p, ��, �✓)
are set to (0.1, 0.1, 1.0). Every 10 iterations, we resample
the points again from the fitted meshes.

6.4. Inference

We extract 2D keypoints using Sapiens [32], and we pre-
process keypoints and bounding boxes (image crops) before
inference. SHAPify is a lightweight optimization algorithm
that can be run on a CPU and takes roughly 1 second for
each image. For body fitting inference, we tested our model
on a single NVIDIA RTX 3090 GPU. We set the number
of denoising steps to T = 5, and it takes approximately
1 second per frame without any parallelization (batch size
= 1). As a reference, ScoreHMR [67] requires T = 20
denoising steps and takes about 3 seconds per frame under
the same data setup.
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Figure 12. Example of the body points at each denoising time step. Using the rectified flow formulation allows us to efficiently sample
body point clouds in as few as 5 denoising steps.

Method MPJPE
# (mm)

PA-MPJPE
# (mm)

MVE
# (mm)

PA-MVE
#(mm)

IK (24 joints) [81] 67.8 49.3 81.9 60.3

25% Points 63.8 45.3 78.1 59.0
50% Points 63.2 44.7 73.7 53.6
100% Points 62.6 44.4 72.9 53.1

Table 6. Effectiveness of Point Fitter. We report the fitting ac-
curacy on the EMDB “P1-14” sequence using IK and Point Fitter.
We also analyze the robustness of Point Fitter by dropping out sur-
face points during fitting.

7. More Experimental Results

7.1. Shape Estimation

We visualize the results of SHAPify against existing meth-
ods on EMDB in Fig. 9. Even on a simple T-pose image,
existing methods predict shapes with significant errors, es-
pecially when subjects wear loose clothing like jackets.

EMDB mainly contains subjects with moderate body
shape. Since real-world data of extreme body shapes is lim-
ited, in Fig. 8, we visualize the SHAPify and PHD’s fitting
results on a newly recorded slim subject and another high-
BMI subject from the HBW [7] dataset. Because PointDiT
is trained on BEDLAM, which contains body shapes across
a wide BMI range (17.5 to 42.5), our method is able to gen-
eralize to human subjects with diverse body shapes.

7.2. Effectiveness of Point Fitter

In Tab. 6, we analyze the effect of the point cloud size by
retaining 25%, 50% points for fitting. Furthermore, Inverse
Kinematics (IK) [48, 81] is commonly used for fitting 3D
joints back to the parameter space. We also design a joint-
only baseline by replacing the Point Fitter with an open-
source IK solver [81]. The joint-only IK is less accurate
than Point Fitter and incurs expensive optimization loops
that slow down the method (15 seconds per frame). In con-
trast, the Point Fitter is faster but requires more points to
ensure accuracy. When only 25% of points are retained, we
observe a clear increase in MVE. Overall, our design is both
efficient and accurate.

Method MPJPE # MPJPE-PA # MVE # MVE-PA #
ScoreHMR [67] Sample init. 94.3 66.6 122.3 94.7
PHD (Ours) Sample init. 84.2 51.0 100.4 67.6

HMR2.0b [15] init. 81.7 54.2 93.5 67.7
w/ SMPLify [3] - 60.1(+5.9) - -
w/ ScoreHMR [67] - 51.1(-3.1) - -
w/ ScoreHMR* [67] 75.7(-6.0) 51.2(-3.0) 87.5(-6.0) 65.4(-2.3)
w/ PHD (Ours) 80.5(-1.2) 44.4(-9.8) 93.3(-0.2) 57.3(-10.4)

CameraHMR [54] init. 62.1 38.5 72.9 -
w/ ScoreHMR* [67] 59.6(-2.5) 38.0(-0.5) 71.5(-1.4) 51.1
w/ PHD (Ours) 59.4(-2.7) 37.5(-1.0) 71.3(-1.6) 50.9

Table 7. Pelvis-aligned local pose accuracy on 3DPW (14
joints). Top: Body fitting using sampled pose from the body pri-
ors. Middle: Body fitting using the HMR2.0b predictions as ini-
tialization, which is originally used in the ScoreHMR [67] paper.
Bottom: Body fitting using the CameraHMR initialization. * de-
notes re-run with the same input shape and focal length.

7.3. Results on 3DPW
We conduct similar evaluation in Sec. 4.2 on the 3DPW
dataset [73]. Note that for this evaluation benchmark, we
don’t have access to the body measurements of the subjects,
and we use the estimated shapes for evaluation. Overall, we
observed similar performance improvements as on EMDB,
but less pronounced. We identified two major issues with
this benchmark.

First, as noted in EMDB [31], performance on 3DPW
has saturated due to its limited pose diversity, which mo-
tivates the need for EMDB as a diverse and challenging
benchmark. Many recent methods report trends consistent
with ours, i.e., smaller improvements on 3DPW compared
to EMDB. Second, unlike EMDB, which uses EM sensors
and SLAM to reconstruct accurate 3D camera trajectories
and body poses, 3DPW estimates them through a joint op-
timization process based on 2D keypoints and IMU sen-
sors. This approach introduces systematic errors of approx-
imately 26 mm, as reported in the original paper, resulting
in a biased pose distribution. Since this distribution deviates
from that of synthetic training data, the learned prior be-
comes less effective during the fitting stage. Consequently,
recent methods [61, 65] often finetune on the 3DPW train-
ing set to better align with its data distribution. Overall, we
believe that consistent performance gains on EMDB with-
out finetuning are more reliable indicators of robustness to



EMDB [31] 3DPW [73]

Method MPJPE # MPJPE-PA # MVE # MVE-PA # MPJPE # MPJPE-PA # MVE # MVE-PA #

HMR2.0b [15] 117.4 78.0 140.5 94.0 81.8 54.4 93.5 67.8
PARE [34] 113.9 72.2 133.2 85.4 74.5 46.5 88.6 -
HMR2.0a [15] 98.3 60.7 120.8 - 69.8 44.4 82.2 -
TokenHMR [12] 88.1 49.8 104.2 - 70.5 43.8 86.0 -
CameraHMR [54] 70.3 43.3 81.7 - 62.1 38.5 72.9 -
NLF [61] 68.4 40.9 80.6 51.1 59.0 36.5 69.7 48.8

LGD [66] 115.8 81.1 140.6 95.7 - 59.8 - -
ReFit [74] 88.0 58.6 104.5 - 65.3 40.5 75.1 -
WHAM* [65] 79.7 50.4 94.4 - 57.8* 35.9* 68.7* -
ScoreHMR [67] (CameraHMR init.) 74.9 45.0 89.0 54.5 59.6 38.0 71.5 51.1

Ours (Sample init.) 73.6 49.2 86.4 59.1 84.2 51.0 100.4 67.6
Ours (HMR2.0b init.) 73.2 47.4 86.4 58.5 80.5 44.4 93.3 57.3
Ours (CameraHMR init.) 62.5 42.4 74.6 51.6 59.4 37.5 71.3 50.9

Table 8. Comparisons of body fitting with learning-based methods on in-the-wild benchmarks. * indicates fine-tuning on 3DPW,
bold is best result, underlined second best. Our method, initialized with CameraHMR, either beats the state of the art or performs second
best with a narrow margin. This is remarkable as NLF trained on multiple datasets while we only train on synthetic BEDLAM.

Figure 13. Example of shape conditioning. Give the same input image but different � for conditioning, PointDiT can sample point clouds
in different body shapes. We use the SMPL fitter to convert the point clouds to body meshes for visualization.

diverse and challenging poses.

7.4. Comparison to Learning-Based Methods
We extensively compare our method against learning-based
approaches in Tab. 8. Notably, our model is trained ex-
clusively on the synthetic BEDLAM dataset (1M images),
whereas other methods are trained on a combination of
real-world datasets such as Human3.6M [23], MPI-INF-
3DHP [49], and in the case of NLF [61], over 40 datasets.

On the EMDB benchmark, when initializing our opti-
mization with poses randomly sampled from PointDiT, we
observe slightly higher errors compared to CameraHMR.
This is likely due to domain gaps between the synthetic
training images and real test-time images. However, when
using CameraHMR for pose initialization, our method ei-
ther outperforms the state-of-the-art (NLF [61]) or comes
in a close second. On the 3DPW dataset, initializing
with PointDiT-sampled poses results in suboptimal perfor-
mance, primarily due to the biased pose distribution dis-
cussed in Sec. 7.3 and the domain mismatch between train-
ing and test images. To address this, we use CameraHMR
for pose initialization and achieve the second-best perfor-
mance on 3DPW. It is worth noting that the (PA-)MPJPE
values on 3DPW have saturated and are close to the reported

systematic error (26mm). As such, it is difficult to deter-
mine whether improvements reflect actual accuracy gains
or overfitting to inherent dataset biases. Consequently, we
argue that the evaluations on EMDB provide a more mean-
ingful reflection of true pelvis-aligned 3D pose accuracy.

7.5. DiTPose Sampling
In Fig. 12, we visualize the point clouds denoising process
of our PointDiT model. Our model leverages the rectified
flow formulation to train a diffusion model, which allows
for sampling body point clouds in as few as 5 denoising
steps. In Fig. 13, we demonstrate the effectiveness of shape
conditioning in our PointDiT model. Given the same input
images but with different conditional shape parameters, our
model samples diverse body shapes corresponding to the
body pose described in the input images.

7.6. Effect of Shape on Pelvis Position
In Fig. 15, we illustrate how an incorrect body shape ad-
versely affects pelvis positioning. Using incorrect shape
parameters, such as mean shape, leads to using the wrong
bone lengths for body fitting. This will not only affect the
accuracy of the local pose but also the pelvis positions in



Figure 14. Applications on in-the-wild capturing. Given the body measurements of human subjects, our method allows for in-the-wild
human performance capturing using a modern smartphone.
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Figure 15. Effect of shape errors on pelvis accuracy. The mean
shape of ScoreHMR’s predictions is less accurate which leads to
pelvis misalignments as the pose must correct for shape errors. In
contrast, our shape estimate (from SHAPify) is more accurate and
so a better pelvis position can be estimated.

the camera coordinate. Please also refer to our video for a
better visualization of this effect.

7.7. More qualitative results
We present more qualitative results with ScoreHRM [67]
in Fig. 17 and WHAM [65] in Fig. 18. In Fig. 14, we also
showcase results of in-the-wild human performance captur-
ing using our method with a modern smartphone.

8. Discussion
8.1. Applications
Our method is beneficial for in-the-wild avatar reconstruc-
tion [17, 18, 51, 76]. Existing avatar reconstruction methods
all require accurate pose fitting as a starting point, with the
most common practice being to use the averaged shape from
a regressor and refine the poses using 2D keypoints or by
jointly optimizing poses with appearance cues [46]. How-
ever, these strategies are only effective when pose errors are
small and correctable. As discussed earlier, generalized re-
gressors can easily produce implausible 3D poses, which
prevent the avatar from learning accurate pose-dependent
appearances. Therefore, PHD offers a simple and effective
solution by providing more accurate pose and shape inputs
for in-the-wild avatar reconstruction. Furthermore, we be-
lieve that accurate personal shape information is a key fac-

(a) Wrong Keypoint Detection (b) Left-right Keypoint Flipped

Figure 16. Failure cases of our method. (a) Significantly wrong
2D keypoint detections that our pose prior cannot counteract. (b)
The keypoint detector swapped left and right, which is difficult to
recover from.

tor for future avatar-centric applications, such as 3D virtual
try-on and digital human interaction.

8.2. Absolute Pose Metrics

In Sec. 4.2, we emphasized the importance of absolute pose
accuracy in the camera coordinate system and showed that
most state-of-the-art pose regressors failed to achieve desir-
able results. Recently, a new line of work [25, 64, 65, 78,
79] has pursued a similar idea in a slightly different setup
by estimating body poses and trajectories in the world co-
ordinate system. Their evaluation metric, G-MPJPE, is de-
termined by two factors: (1) how well the human poses and
motion over time are estimated, and (2) how accurately the
camera pose trajectories are recovered. Consequently, these
approaches usually involve full-video SLAM tracking and
global optimization over body and camera poses. This met-
ric is more suitable for video-based methods.

In contrast, our proposed camera-coordinate metric, C-
MPJPE, is better suited for per-frame or online methods
that can be used for on-device computations (like ours). C-
MPJPE disentangles the error caused by camera poses and
evaluates only the accuracy of the body pose. Because per-
sonal shape (scale) information is fixed in our problem set-
ting, C-MPJPE is also correlated with 2D alignment accu-
racy, as the 2D projection is definitive when the body scale



Figure 17. Quantitative comparisons on EMDB. While the 2D reprojections seem to be correct, ScoreHMR frequently produces implau-
sible body poses such as bending knees and self-penetration. PHD addresses these issues with a stronger 3D pose prior, PointDiT.

is fixed. It is also worth noting that C-MPJPE can be con-
verted to G-MPJPE given the camera extrinsics over time.

8.3. Limitations and Future Work
Hands and faces. Currently, our work focuses on fitting
SMPL parameters to videos due to the limited availability
of evaluation benchmarks for in-the-wild human pose es-
timation. It is worth noting that both our method and the
PoseDiT model are capable of being easily extended to any
format of parametric models, such as SMPL-X. One of our
future goals is to extend PointDiT to handle hand gestures
and facial expressions. This can be readily achieved by se-
lecting the corresponding data from the BEDLAM training
set in SMPL-X format. We believe that for future percep-
tual AI systems, estimating holistic human body poses with
precise hand and facial information will be indispensable.

2D keypoint detection. Although PointDiT is an effec-
tive 3D prior, our fitting method still depends on the ac-
curacy of 2D keypoint detections. When these detections
fail significantly (see Fig. 16), our method struggles to
recover. An exciting direction for future work is to ex-
plore appearance-/feature-based fitting by leveraging pow-
erful pretrained foundation models such as DINOv2 [53].
This approach could make the fitting process more robust
to challenging poses that 2D keypoint detectors could fail.

Temporal Smoothness. Our method and the evaluations
in this paper follow a per-frame setting. This setup is
closer to real-world on-device computation and allows for
a fair assessment of the model’s performance without rely-
ing on future or past information. While the metrics appear
promising, we observed noticeable jittering across frames.
Additionally, our method does not hallucinate continuous
body motion when parts of the body are occluded or un-
observed. To address these issues, a promising direction
is to extend PointDiT into a temporal model that incorpo-
rates motion priors rather than predicting a single pose at a
time. However, training such a model would require even
more data beyond what BEDLAM provides. We believe
that video generative AI can help address this challenge by
offering a wide range of realistic motion data.

Learning-based optimization. Our method can run at 1
FPS on a common GPU (RTX 3090). While this is al-
ready faster than most existing pose fitting methods, it is
still not yet suitable for real-time pose tracking. This lim-
itation stems from the nature of optimization loops. Even
though PointDiT provides strong 3D guidance during the
fitting process, it still requires several iterations to converge.
One way to mitigate these long optimization loops is to ex-
ploit a ”learning to optimize” approach [8, 66], allowing the
network to memorize optimization trajectories. Potentially,



Figure 18. Quantitative comparisons on EMDB. When comparing with regression-based method, WHAM, our approach is more robust
to challenging poses and achieves better 2D alignments.

it achieves faster inference speeds through a feed-forward
network while retaining the accuracy of optimization.


