
3DGS-LM: Faster Gaussian-Splatting Optimization with Levenberg-Marquardt

Supplementary Material

A. More Details About CUDA Kernel Design
We introduce the necessary CUDA kernels to calculate the
PCG algorithm in Sec. 3.3. In this section, we provide ad-
ditional implementation details.

A.1. Parallelization Pattern
We implement the per-pixel-per-splat parallelization pat-
tern in our CUDA kernels by reading subsequent entries
from the gradient cache in subsequent threads. This makes
reading cache values perfectly coalesced and therefore min-
imizes the overhead caused by the operation. The gradient
cache is sorted over Gaussians, which means that subse-
quent entries refer to different rays (pixels) that saw this
projected Gaussian (splat). In general, one thread han-
dles all residuals corresponding to the respective pixel, i.e.,
many computations are shared across color channels and are
therefore combined.

A.2. Design Of buildCache And applyJT

The necessary computations for the buildCache and
applyJT steps in PCG (see Algorithm 1) are split across
three kernels. This follows the original design of the 3DGS
differentiable rasterizer [23]. In both cases, we calculate
the Jacobian-vector product of the form g=JTu where
J∈RNxM is the Jacobian matrix of N residuals and M
Gaussian parameters and u∈RN is an input vector. The
k-th element in the output vector is calculated as:

gk =

N∑
i=0

∂ri
∂xk

ui =
∂yk

∂xk

N∑
i=0

∂ri
∂yk

ui (9)

where ri is the i-th residual and xk is the k-th Gaussian pa-
rameter. In other words, gk is a sum over all residuals for
the k-th Gaussian parameter. Following the chain-rule, it
is possible to split up the gradient ∂ri

∂xk
= ∂ri

∂yk

∂yk

∂xk
. We can

use this to split the computation across three smaller ker-
nels, where only the first needs to calculate the sum over all
residuals:

∑N
i=0

∂ri
∂yk

ui. This sum is the main bottleneck for
the kernel implementation, since it needs to be implemented
atomically (i.e., multiple threads write to the same output
position). The other kernels then only calculate the remain-
ing steps by parallelizing over Gaussians. We slightly abuse
notation and denote with yk the 2D mean, color, and opac-
ity attributes of the k-th projected Gaussian. That is, the
first kernel sums up the partial derivatives to each of these
attributes in separate vectors. In the following, we add the
suffixes p1, p2, p3 to denote the three kernels for the
respective operation (where p1 refers to the kernel that cal-
culates the sum over residuals).

The buildCache p1 utilizes the original per-pixel
parallelization, whereas the applyJT p1 kernel use the
gradient cache and our proposed per-pixel-per-splat paral-
lelization pattern. The gradient cache is sorted over Gaus-
sians, i.e., subsequent entries correspond to different rays of
the same splat. This allows us to efficiently implement the
sum by first performing a segmented warp reduce and then
only issuing one atomicAdd statement per warp.

A.3. Design Of applyJ And diagJTJ

In contrast, the applyJ and diagJTJ computations can-
not be split up into smaller kernels. Concretely, the
applyJ kernel calculates u=Jp with p∈RM . The k-th
element in the output vector is calculated as:

uk =

M∑
i=0

∂rk
∂xi

pi =

N∑
i=0

∂rk
∂yi

∂yi

∂xi
pi (10)

In other words, uk is a sum over all Gaussian attributes for
the k-th residual. Similarly, the diagJTJ kernel calculates
M = diag(JTJ) ∈ RM . The k-th element in the output
vector is calculated as:

Mk =

N∑
i=0

(
∂ri
∂xk

)2 =

N∑
i=0

(
∂ri
∂yk

∂yk

∂xk
)2 (11)

In both cases it is not possible to move part of the gradi-
ents outside of the sum. As a consequence, both applyJ
and diagJTJ are implemented as one kernel, where each
thread directly calculates the final partial derivatives to
all Gaussian attributes. This slightly increases the num-
ber of required registers and the runtime compared to the
applyJT kernel (see Tab. 5). The diagJTJ kernel makes
use of the same segmented warp reduce as applyJT p1
for efficiently summing up the squared partial derivatives.
The applyJ kernel first sums up over all Gaussian at-
tributes within each thread separately. Then, we only issue
one atomicAdd statement for each residual per thread.

The applyJ kernel requires the input vector p to be
sorted per Gaussian to make reading from it coalesced.
That is: p=[xa

1 , ..., x
z
1, ..., x

a
M , ..., xz

M]T , where xa
k is the

value corresponding to the a-th parameter of the k-th Gaus-
sian. In total, each Gaussian consists of 59 parameters:
11 for position, rotation, scaling, and opacity and 48 for
all Spherical Harmonics coefficients of degree 3. In con-
trast, all other kernels require the output vector to be sorted
per attribute to make writing to it coalesced. That is:
q=[xa

1 , ..., x
a
M , ..., xz

1, ..., x
z
M]T . We use the structure of q

for all other vector-vector calculations in Algorithm 1 as

well. Whenever we call the applyJ kernel, we thus first
call the sortX kernel that restructures q to the layout of p.

A.4. Precomputation Of Residual-To-Pixel Weights
We adopt the square root formulation of the residuals in our
energy formulation (see Eq. (3)). We efficiently precompute
the contribution of the square root to the partial derivatives
of Eq. (9), Eq. (10), and Eq. (11). In the following, we
divide the partial derivatives from the i-th residual to the
k-th Gaussian attribute into two stages:

∂ri
∂xk

=
∂ri
∂ci

∂ci
∂xk

(12)

where ∂ri
∂ci

goes from the residual to the rendered pixel
color and ∂ci

∂xk
from the pixel color to the Gaussian attribute.

Since we adopt the L1 and SSIM loss terms and take their
square root, the terms ∂ri

∂ci
need to be calculated accordingly.

In contrast, when using the L2 loss they take a trivial form
of ∂ri

∂ci
=1. In the following, we show that we can simplify

the calculation of ∂ri
∂xk

in the kernels by precomputing ∂ri
∂ci

.
The k-th element of g is calculated as:

gk = (JTJp)k =

N∑
i=0

∂ri
∂xk

M∑
j=0

∂ri
∂xj

pj (13)

By substituting Eq. (12) into Eq. (13), we factor out ∂ri
∂ci

:

gk =

N∑
i=0

(
∂ri
∂ci

)2
∂ci
∂xk

M∑
j=0

∂ci
∂xj

pj (14)

The terms ∂ci

∂xk
are identical for a residual of the same pixel

and color channel that corresponds to either the L1 or SSIM
loss terms, respectively. To avoid computing ∂ci

∂xk
twice (and

therefore doubling the grid size of all kernels), we instead
sum up the contribution of both loss terms:

(
∂ri
∂ci

)2 = (
∂r1i
∂ci

)2 + (
∂r2i
∂ci

)2 (15)

where r1i corresponds to the i-th L1 residual and r2i to the i-
th SSIM residual. Additionally, we implement the multipli-
cation with (∂ri∂ci

)2 in Eq. (14) as elementwise vector prod-

uct (denoted by ⊙) of û=[
∑M

j=0
∂c0

∂xj
pj ...

∑M
j=0

∂cN

∂xj
pj]

and ∇r=[(∂r0∂c0
)2...(∂rN∂cN

)2]:

gk =

N∑
i=0

∂ci
∂xk

(û⊙∇r)i (16)

This avoids additional uncoalesced global memory reads to
∇r in the CUDA kernels. Instead, we calculate û⊙∇r in

a separate operation after the applyJ kernel and before
applyJT. This also simplifies the kernels, since they now
only need to compute ∂ci

∂xk
instead of ∂ri

∂xk
. Therefore, the

only runtime overhead of using the L1 and SSIM residual
terms over the L2 residuals is the computation of ∇r. How-
ever, this can be efficiently computed using backpropaga-
tion (autograd) and is therefore not a bottleneck.

B. Derivation Of Image Subsampling Weights

We subsample batches of images to decrease the size of
the gradient cache (see Sec. 3.3). To combine the update
vectors from multiple batches, we calculate their weighted
mean, as detailed in Eq. (8). This weighted mean approxi-
mates the “true” solution to the normal equations (Eq. (4)),
that does not rely on any image subsampling (and instead
uses all available training images). When subsampling im-
ages, we split the number of total residuals into smaller
chunks. In the following, we consider the case of two
chunks (labeled as 1 and 2), but the same applies to any
number of chunks. We re-write the normal equations (with-
out subsampling) using the chunk notation as:

[
JT
1 JT

2

] [J1

J2

]
∆ =

[
JT
1 JT

2

] [F1(x)
F2(x)

]
(17)

where we drop the additional LM regularization term for
clarity and divide the Jacobian and residual vector into sepa-
rate matrices/vectors according to the chunks. The solution
to the normal equations is obtained by:

∆ = (JT
1 J1 + JT

2 J2)
−1(JT

1 F1(x) + JT
2 F2(x)) (18)

In contrast, when we subsample images, we solve the nor-
mal equations separately and obtain two solutions:

∆1 = (JT
1 J1)

−1JT
1 F1(x) (19)

∆2 = (JT
2 J2)

−1JT
2 F2(x) (20)

We can rewrite Eq. (18) as a weighted mean of ∆1, ∆2:

∆ = K−1(JT
1 J1)(J

T
1 J1)

−1(JT
1 F1(x)) (21)

+K−1(JT
2 J2)(J

T
2 J2)

−1(JT
2 F2(x)) (22)

= w1∆1 + w2∆2 (23)

where K = (JT
1 J1+JT

2 J2), w1 = K−1(JT
1 J1), w2 =

K−1(JT
2 J2). Calculating these weights requires to mate-

rialize and invert K, which is too costly to fit in memory.
To this end, we approximate the true weights w1 and w2

with w̃1 = diag(w1) and w̃2 = diag(w2). This directly
leads to the weighted mean that we employ in Eq. (8).

Kernel Runtime (ms) ↓ Compute Throughput (%)↑ Memory Throughput (%)↑ Register Count ↓
buildCache p1 31.32 78.56 78.56 64
buildCache p2 0.53 17.43 87.94 58
buildCache p3 4.12 4.54 73.45 74
sortCacheByGaussians 5.04 61.17 61.17 18
diagJTJ 41.60 71.13 71.13 90
sortX 4.45 15.15 60.30 36
applyJ 10.98 86.32 86.32 80
applyJT p1 3.93 75.79 75.79 34
applyJT p2 0.37 18.83 89.69 40
applyJT p3 3.20 4.75 78.48 48

Table 5. Profiler analysis of CUDA kernels. We provide results measured on a RTX3090 GPU for building/resorting the gradient cache
and running one PCG iteration on the MipNerf360 [4] “garden” scene with a batch size of one image.

C. Detailed Runtime Analysis
We provide additional analysis of the CUDA kernels by run-
ning the NVIDIA Nsight Compute profiler. We pro-
vide results in Tab. 5 measured on a RTX3090 GPU for
building/resorting the gradient cache and running one PCG
iteration on the MipNerf360 [4] “garden” scene with a batch
size of one image. We add the suffixes p1, p2, p3 to
signal the three kernels that we use to implement the respec-
tive operation (see Appendix A).

Comparing the runtime of the buildCache and
applyJT kernels reveals the advantage of our pro-
posed per-pixel-per-splat parallelization pattern. Both
compute the identical Jacobian-vector product, but the
buildCache kernel relies on the per-pixel parallelization
pattern of the original 3DGS rasterizer [23]. However, we
compute the result 4.8x faster using the gradient cache in
the applyJT kernel. We also note that the compute and
memory throughput as well as the register count of both
kernels are roughly similar. This signals that our kernel im-
plementation is equally efficient, i.e., there are no inherent
drawbacks using our proposed GPU parallelization scheme.

D. Results Per Scene
We provide a per-scene breakdown of our main quantitative
results against all baselines on all datasets. The compar-
isons against 3DGS [23] are in Tab. 6. The comparisons
against DISTWAR [12] are in Tab. 7. The comparisons
against gsplat [48] are in Tab. 8. The comparisons against
Taming-3DGS [32] are in Tab. 9. Our method shows consis-
tent acceleration of the optimization runtime on all scenes,
while achieving the same quality.

Method Scene MipNeRF-360 [4]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

3DGS [23] treehill 0.631 22.44 0.330 1130
+ Ours treehill 0.633 22.57 0.334 836

3DGS [23] counter 0.905 28.96 0.202 1178
+ Ours counter 0.904 28.89 0.206 927

3DGS [23] stump 0.769 26.56 0.217 1234
+ Ours stump 0.774 26.67 0.218 895

3DGS [23] bonsai 0.939 31.99 0.206 1034
+ Ours bonsai 0.938 31.84 0.208 794

3DGS [23] bicycle 0.764 25.20 0.212 1563
+ Ours bicycle 0.765 25.30 0.218 1141

3DGS [23] kitchen 0.925 31.37 0.128 1389
+ Ours kitchen 0.924 31.21 0.128 1156

3DGS [23] flowers 0.602 21.49 0.340 1132
+ Ours flowers 0.600 21.52 0.344 819

3DGS [23] room 0.917 31.36 0.221 1210
+ Ours room 0.916 31.10 0.224 1004

3DGS [23] garden 0.862 27.23 0.109 1573
+ Ours garden 0.863 27.30 0.110 1175

Method Scene Deep Blending [19]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

3DGS [23] playroom 0.901 29.90 0.247 1085
+ Ours playroom 0.905 30.24 0.246 861

3DGS [23] drjohnson 0.898 29.12 0.246 1359
+ Ours drjohnson 0.901 29.23 0.248 1040

Method Scene Tanks & Temples [27]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

3DGS [23] train 0.811 21.95 0.209 636
+ Ours train 0.811 22.07 0.214 579

3DGS [23] truck 0.877 25.40 0.148 837
+ Ours truck 0.876 25.36 0.151 747

Table 6. Quantitative comparison of our method and base-
lines. We show the per-scene breakdown of all metrics against
the 3DGS [23] baseline.

Method Scene MipNeRF-360 [4]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

DISTWAR [12] treehill 0.633 22.47 0.327 898
+ Ours treehill 0.635 22.54 0.332 669

DISTWAR [12] counter 0.905 29.00 0.203 790
+ Ours counter 0.904 28.91 0.205 687

DISTWAR [12] stump 0.771 26.60 0.216 1017
+ Ours stump 0.773 26.70 0.217 760

DISTWAR [12] bonsai 0.939 32.13 0.206 677
+ Ours bonsai 0.938 31.92 0.208 578

DISTWAR [12] bicycle 0.763 25.19 0.212 1333
+ Ours bicycle 0.764 25.26 0.218 971

DISTWAR [12] kitchen 0.925 31.31 0.127 957
+ Ours kitchen 0.924 31.14 0.128 838

DISTWAR [12] flowers 0.602 21.45 0.340 884
+ Ours flowers 0.596 21.48 0.348 671

DISTWAR [12] room 0.916 31.41 0.221 803
+ Ours room 0.916 31.40 0.224 680

DISTWAR [12] garden 0.862 27.23 0.109 1338
+ Ours garden 0.861 27.32 0.112 1023

Method Scene Deep Blending [19]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

DISTWAR [12] playroom 0.900 29.81 0.247 729
+ Ours playroom 0.905 30.24 0.246 586

DISTWAR [12] drjohnson 0.898 29.13 0.247 953
+ Ours drjohnson 0.901 29.13 0.249 758

Method Scene Tanks & Temples [27]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

DISTWAR [12] train 0.812 22.05 0.209 504
+ Ours train 0.810 22.10 0.216 440

DISTWAR [12] truck 0.877 25.29 0.148 698
+ Ours truck 0.877 25.28 0.150 635

Table 7. Quantitative comparison of our method and base-
lines. We show the per-scene breakdown of all metrics against
the DISTWAR [12] baseline.

Method Scene MipNeRF-360 [4]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

gsplat [48] treehill 0.634 22.44 0.324 973
+ Ours treehill 0.635 22.54 0.332 701

gsplat [48] counter 0.908 28.99 0.201 903
+ Ours counter 0.904 28.91 0.205 762

gsplat [48] stump 0.769 26.53 0.218 1097
+ Ours stump 0.774 26.70 0.217 793

gsplat [48] bonsai 0.937 31.95 0.208 783
+ Ours bonsai 0.938 31.92 0.208 646

gsplat [48] bicycle 0.765 25.21 0.206 1398
+ Ours bicycle 0.765 25.26 0.218 988

gsplat [48] kitchen 0.926 31.17 0.128 1086
+ Ours kitchen 0.924 31.14 0.128 921

gsplat [48] flowers 0.600 21.53 0.338 965
+ Ours flowers 0.601 21.48 0.348 709

gsplat [48] room 0.920 31.48 0.219 913
+ Ours room 0.916 31.39 0.224 753

gsplat [48] garden 0.869 27.48 0.105 1462
+ Ours garden 0.861 27.32 0.112 1085

Method Scene Deep Blending [19]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

gsplat [48] playroom 0.907 29.89 0.248 799
+ Ours playroom 0.904 30.90 0.247 626

gsplat [48] drjohnson 0.901 29.16 0.244 1040
+ Ours drjohnson 0.901 29.07 0.251 805

Method Scene Tanks & Temples [27]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

gsplat [48] train 0.811 21.64 0.209 558
+ Ours train 0.809 22.09 0.216 381

gsplat [48] truck 0.880 25.35 0.149 735
+ Ours truck 0.877 25.28 0.150 447

Table 8. Quantitative comparison of our method and base-
lines. We show the per-scene breakdown of all metrics against
the gsplat [48] baseline.

Method Scene MipNeRF-360 [4]

SSIM↑ PSNR↑ LPIPS↓ Time (s) #G (M)

Taming [32] treehill 0.625 23.00 0.385 479 0.78
+ Ours treehill 0.623 23.03 0.332 381 0.78

Taming [32] counter 0.896 28.59 0.223 646 0.31
+ Ours counter 0.894 28.51 0.205 537 0.31

Taming [32] stump 0.734 25.96 0.292 405 0.48
+ Ours stump 0.733 25.98 0.217 315 0.48

Taming [32] bonsai 0.934 31.73 0.221 634 0.41
+ Ours bonsai 0.932 31.64 0.208 504 0.41

Taming [32] bicycle 0.716 24.78 0.295 485 0.81
+ Ours bicycle 0.709 24.75 0.218 376 0.81

Taming [32] kitchen 0.918 30.85 0.141 722 0.48
+ Ours kitchen 0.918 30.84 0.128 597 0.48

Taming [32] flowers 0.554 21.00 0.407 465 0.57
+ Ours flowers 0.549 20.99 0.348 365 0.57

Taming [32] room 0.906 31.12 0.251 621 0.22
+ Ours room 0.906 31.21 0.224 521 0.22

Taming [32] garden 0.852 27.24 0.128 638 1.90
+ Ours garden 0.852 27.25 0.112 483 1.90

Method Scene Deep Blending [19]

SSIM↑ PSNR↑ LPIPS↓ Time (s) #G (M)

Taming [32] playroom 0.900 30.29 0.278 419 0.18
+ Ours playroom 0.902 30.41 0.280 324 0.18

Taming [32] drjohnson 0.899 29.38 0.269 475 0.40
+ Ours drjohnson 0.899 29.40 0.271 370 0.40

Method Scene Tanks & Temples [27]

SSIM↑ PSNR↑ LPIPS↓ Time (s) #G (M)

Taming [32] train 0.815 22.18 0.205 411 0.36
+ Ours train 0.802 22.28 0.241 328 0.36

Taming [32] truck 0.879 25.40 0.146 514 0.27
+ Ours truck 0.862 25.16 0.178 292 0.27

Table 9. Quantitative comparison of our method and base-
lines. We show the per-scene breakdown of all metrics against the
Taming-3DGS [32] baseline. Additionally, we include the number
of Gaussians in millions (#G (M)) that we obtained using the de-
fault hyperparameters for “budgeting”.

	More Details About CUDA Kernel Design
	Parallelization Pattern
	Design Of buildCache And applyJT
	Design Of applyJ And diagJTJ
	Precomputation Of Residual-To-Pixel Weights

	Derivation Of Image Subsampling Weights
	Detailed Runtime Analysis
	Results Per Scene

