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A. Additional Related Work: Data Scarcity in
Video-based Detection

Another branch of literature related to our study focuses
on addressing data scarcity in video-based detection. In
this context, Weakly Supervised Video Anomaly Detection
(WSVAD) has emerged as a prominent and active research
area in recent years [4, 13, 17]. A seminal work by Sultani
et al. [17] pioneered the use of a deep multiple instance
learning (MIL) framework, where each video is viewed as
a “bag” of segments (instances). By employing a ranking
loss on bag-level annotations, their model effectively maxi-
mizes the margin between anomalous segments in positive
bags and normal ones in negative bags. Building on this
foundation, subsequent studies have explored ways to en-
hance the positive modeling capability of WSVAD. Zhong
et al. [24] introduced a GCN-based framework that captures
inter-segment feature similarity and enforces temporal co-
herence. Tian et al. [18] proposed a robust temporal feature
magnitude learning strategy, substantially improving MIL’s
tolerance to false negatives from abnormal videos. More
recently, the integration of pre-trained vision-language mod-
els has opened new possibilities for VAD. VadCLIP [23]
represents a milestone by transferring the rich cross-modal
knowledge of CLIP [15] to WSVAD, achieving state-of-the-
art performance. Building on this paradigm, Pu et al. [13]
further improved detection by designing prompt-enhanced
contextual representations.

However, mainstream pre-trained vision-language mod-
els such as CLIP are typically trained on benign image-text
datasets. As a result, directly transferring their pre-trained
knowledge to malicious video detection remains suboptimal.
And in this work, we employ pre-trained CLIP as the feature
encoders, but we also incorporate abundant malicious knowl-
edge from extensive off-the-shelf harmful content detection
image-text datasets to further enhance the detection.

B. Complexity & Efficiency
In this section, we provide an in-depth analysis of the com-
plexity and efficiency of the proposed CRAVE framework,
highlighting its practical applicability.

B.1. Computational Complexity Analysis
We analyze the computational complexity of the proposed
CRAVE framework, focusing on its two main components:
the PP Retriever and the CCD Augmenter. We also discuss
the overall complexity to provide insights into the scalability

and efficiency of the framework.

B.1.1. Complexity of PP Retriever
The computational complexity of the PP Retriever mainly
involves three steps including pseudo-pair generation, sim-
ilarity computation, and cross-domain retrieval. Given L̃

sampled frames per video, encoding them via CLIP vision
encoder requires O(L ·dv) operations, where dv is the visual
feature dimension. Clustering these features into L repre-
sentative frames introduces O(L̃ · L · dv) complexity. For
each video, generating L pseudo-pairs (see Eq. (1)) incurs
O(L · (dv + dt)) complexity, where dt is the text feature di-
mension. Before retrieval, preprocessing image-text dataset
requires encoding NP image-text pairs in DP using CLIP,
with complexity O(NP · (dv +dt)), where dv and dt are fea-
ture dimensions of visual/text encoders. Computing similar-
ity scores (Eq. (2)) between L pseudo-pairs and NP image-
text pairs in DP requires O(L · NP · (dv + dt)). The top-K
retrieval (Eq. (3)) adds O(L ·NP · logK) complexity. Thus,
the overall complexity is dominated by O(L ·NP ·(dv+dt)),
which can be optimized via FAISS [5] for efficient nearest
neighbor search.

B.1.2. Complexity of CCD Augmenter
The CCD Augmenter’s complexity stems from cross-domain
decoupling and contrastive learning. Encoding video and
K retrieved pairs (where K = K

+ + K
→) involves

O((1 +K) · (dv + dt)) operations. Shared/unique encoders
(Eqs. (4) and (5)) process features with O((1 + K) · d2)
complexity, where d is the hidden dimension. The DIO
loss (Eq. (6)) and DUO loss (Eq. (7)) require O(d) and
O((1 + K) · d2) operations, respectively. The contrastive
loss (Eq. (8)) adds O(K · d) complexity. Overall, the CCD
Augmenter’s complexity is O((1 + K) · d2), efficient for
practical deployment.

B.1.3. Overall Complexity
Combining the complexities of the PP Retriever and the
CCD Augmenter, CRAVE’s total complexity is O(L · NP ·
(dv + dt) + (1 + K) · d2). This ensures scalability and
efficiency, particularly when leveraging optimization tech-
niques for efficient nearest neighbor search and efficient
model architectures. Additionally, the training algorithm for
our proposed CRAVE is detailed in Algorithm 1.

B.2. Efficiency Comparison
We compare CRAVE to competitive baselines by recording
the number of trainable parameters and the training time per



Algorithm 1 Training Algorithm of CRAVE
Input: Video dataset DS , image-text dataset DP

Output: Trained malicious video detection model f!
1: for each video S = (V, T , Y ) → DS do
2: /* Pseudo-Pair Retriever */
3: Sample L̃ frames from V and cluster to L representa-

tive frames {Ĩl}Ll=1

4: Generate L pseudo-pairs {P̃l = (Ĩl, C̃l)} via Eq. (1)
5: Compute similarity scores sim(P̃l,Pj) for all P̃l and

Pj → DP via Eq. (2)
6: Retrieve top-K+ positive pairs N r+ and top-K→ neg-

ative pairs N r→ via Eq. (3)
7: /* Contrastive Cross-Domain Augmenter */
8: Encode T to hT

v and {Cr
k}Kk=1 to hT

p with CLIP Text
Encoder and MLP

9: Encode V to hV
v and {Ir

k}Kk=1 to hV
p with CLIP Vision

Encoder and MLP
10: for m → {v, p} do
11: Extract shared features hm,shared via Eq. (4)
12: Extract unique features hm,unique via Eq. (5)
13: end for
14: Compute DIO loss LDIO via Eq. (6)
15: Compute DUO loss LDUO via Eq. (7)
16: Compute contrastive loss LCL via Eq. (8)
17: /* Model Optimization */
18: Fuse hv,shared ↑ hv,unique

19: Compute prediction Ŷi with MLP classifier
20: Calculate classification loss LCLS with Binary Cross-

Entropy
21: Obtain the total loss: Ltotal via Eq. (9)
22: Update ! via backpropagation
23: end for

epoch on the FakeTT dataset, with the results presented in
Figure B.1.

From the results, we can see that SVFEND and FakeRec
have a significantly higher number of trainable parameters
and longer training times, owing to their sophisticated design
for malicious video detection. And transfer-based models
like TSformer and ViLT have fewer parameters due to their
trainable classifiers but require more time for calculations
when dealing with large-scale frozen parameters. Mean-
while, MHCL and HTMM, with their simpler model ar-
chitectures, incur lower training costs but deliver average
performance.

In contrast, our model strikes a balance between perfor-
mance and running costs by employing a straightforward
architecture that effectively leverages large-scale datasets
to enhance video detection tasks, thereby achieving signifi-
cantly better results.
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Figure B.1. The performance of our CRAVE and competitive
baselines with respect to the number of trainable parameters and
training time of each epoch.

C. Proof of the Effectiveness of CRAVE through
an Information-Theoretic Perspective

The previous sections in the main paper have demonstrated
the motivation and process behind utilizing cross-domain
image-text data to solve the data-scarcity in malicious
video detection. In this section, the effectiveness of the
retrieved cross-domain knowledge transfer within the pro-
posed CRAVE framework is evaluated from an information-
theoretic perspective. The malicious video detection is de-
fined as determining whether a given video Si is malicious
or benign. For any given video Si, we aim to show that
incorporating external knowledge from retrieved image-text
domain data Ri improves the prediction of the label Yi. Let
Vi, and Ti represent the vision, and text modality represen-
tations of the Si, respectively. We can state the following
proposition.

Proposition 1. Let the mutual information I(X;Y ) quantify
the amount of information that the variables X and Y share
regarding one another. Consequently, we can express:

I (Yi; Vi, Ti,Ri) ↓ I (Yi; Vi, Ti) . (10)

Proof. According to the definition of mutual information,



we have:

I (Yi; Vi, Ti,Ri) = E
[
log

P (Yi,Vi, Ti,Ri)

P (Yi)P (Vi, Ti,Ri)

]

= E
[
log

P (Yi,Vi)P (Ti | Yi,Vi)P (Ti | Yi,Vi, Ti)

P (Yi)P (Vi)P (Ti | Vi)P (Ri | Vi, Ti)

]

= E
[
log

P (Yi,Vi)

P (Yi)P (Vi)

]
+ E

[
log

P (Yi, Ti | Vi)

P (Ti | Vi)P (Yi | Vi)

]

+ E
[
log

P (Yi,Ri | Vi, Ti)

P (Ri | Vi, Ti)P (Yi | Vi, Ti)

]

= I (Yi; Vi) + I (Yi; Ti | Vi) + I (Yi; Ri | Vi, Ti)

= I (Yi; Vi, Ti) + I (Yi; Ri | Vi, Ti) .
(11)

Since conditional mutual information I (Yi; Ri | Vi, Ti) ↓
0, we can get: I (Yi; Vi, Ti,Ri) ↓ I (Yi; Vi, Ti). Now, the
proof of Proposition 1 is completed.

Proposition 1 demonstrates that the representations trans-
ferred from cross-domain encompass more meaningful in-
formation compared to only taking into account the visual
and textual modalities within single video domain.

D. Detailed Experimental Setup
D.1. Baselines
We compare CRAVE with 10 baselines, which can be
broadly categorized into three groups: (1) Vanilla detec-
tion methods which leverage various multimodal approaches
to detect malicious content in videos. (2) Generative-based
augmentation methods, which tackle data-scarcity in mali-
cious video detection by synthesizing new video data. No-
tably, these video-based augmentations are only employed to
enrich the training dataset and the results are from the best-
performing baselines training on the enriched dataset. (3)
Cross-domain augmentation methods, which transfer knowl-
edge from resource-rich domain to target domain. Below is
the detailed description for each baseline model.
(1) Vanilla detection methods:
• HTMM [3] extracts features from transcripts, video

frames, and audio frames. These features are combined
into a single representation, which is then passed to an
MLP-based classifier to identify hateful content in videos.

• MHCL [20] evaluates the contribution of each modality to
hateful content detection in videos. It utilizes LSTM-based
encoders to process audio, textual, and visual features,
which are then used to detect hateful content in videos.

• SVFEND [14] is a multimodal model designed for de-
tecting rumors in videos. It identifies key features for
detection by incorporating both cross-modal correlations
and social context information.

• FakeRec [2] is a model designed for rumor detection in
micro-videos, focusing on the creative process. It exam-
ines patterns in material selection and editing, taking into

account sentimental, semantic, spatial, and temporal di-
mensions.

(2) Generative-based augmentation methods:
• Spatial Augmentation [16] applies random cropping to

one-quarter of the frame, horizontal flipping, and random
adjustments of brightness and contrast. The same augmen-
tation is consistently applied across all frames to maintain
temporal coherence. This method generates two additional
augmented versions per video, effectively doubling the
dataset size.

• Temporal Augmentation [6] varies the frame rate by
altering the sampling interval while keeping the video
duration unchanged. This introduces temporal diversity
and produces one additional augmented version per video,
doubling the training set size.

(3) Cross-domain augmentation methods:
• ViLT [8] is a pre-trained vision-language transformer that

directly extracts and processes visual features with the sep-
arate deep visual embedder. We use the vilt-b32-mlm
version for experiment. We provide the video cover, along
with the title, on-screen text, and audio transcript to ViLT,
resulting in 768-dimensional features. These features are
then passed through a two-layer MLP to generate the final
prediction.

• TSformer [1] is a pre-trained video transformer that
utilizes separate spatial and temporal attention mech-
anisms to analyze frame-level patches for video un-
derstanding tasks. And we select the specific version
timesformer-base-finetuned-k400 to conduct
experiment. In our method, TSformer extracts 768-
dimensional features from each video, which are then
processed through a two-layer MLP to generate the final
prediction.

• LLaVA [9] is an open large multimodal model (LMM)
developed by consolidating our insights into data, models,
and visual representations. We select LLaVA-OneVision,
specifically llava-onevision-qwen2-7b-ov-hf,
which is the newest state-of-the-art among multimodal
models. Notably, for LMM-based methods, including
LLaVA and Qwen-VL, we provide the text and raw video
content along with a specifically designed prompt to guide
the output generation.

• Qwen-VL [21] is an open large multimodal model from
the Qwen model family. Qwen-VL possesses complex rea-
soning and decision-making capabilities, achieving state-
of-the-art performance on visual understanding bench-
marks. We select Qwen2-VL-7B-Instruct, which
is the newest model in the Qwen family, as a competitive
baseline.
Notably, to adapt the two LMMs (LLaVA and Qwen-VL)

for the task of malicious video detection, we meticulously
design a task-specific chain-of-thought (CoT) [22] prompt,
as detailed in Table D.1.



Prompt: Your task is to determine whether a video con-
tains malicious content, such as hate or rumors, based on
its title, audio transcript, and raw video content. Think
step by step when analyzing the provided information,
and then decide whether the video is malicious or benign.
Clearly indicate your final decision.
Title: { title text }
Transcript: { audio transcript text }
Video Content: { raw video content }
Now explain your reasoning process and provide final
prediction: malicious or benign.

Table D.1. Example of CoT prompt for malicious video detection
applied in two LMM-based cross-domain augmentation methods.

D.2. Datasets
We evaluate our CRAVE across four real-world malicious
video detection datasets, where data-scarcity is a common
challenge. The datasets are categorized as follows: (1) Ru-
mor detection datasets: FakeTT [2] and FVC [12], which
focus on rumor video detection on platforms including Tik-
Tok, YouTube, and Twitter. We select Fakeddit [11], which is
a rumor detection dataset comprising image-text pairs posted
from Reddit, as an extra image-text pair dataset. (2) Hate
detection datasets: MHClipEN [20] and HateMM [3], which
focus on detecting harmful video on platforms like YouTube
and BitChute. We select the Facebook Hateful Meme dataset,
FHM [7], which is a harmful meme dataset collected from so-
cial media, as an extra image-text pair dataset. The detailed
descriptions for each dataset are presented as follows:
(1) Rumor detection datasets:
• FakeTT [2]: This dataset is designed to detect misinfor-

mation in short-form videos, specifically in the English
language. It is meticulously curated from the widely-used
platform TikTok. Each sample in FakeTT includes the
video content, its title, and corresponding metadata.

• FVC [12]: This dataset is constructed for detecting and
analyzing fake videos versus real user-generated videos
(UGVs). Sourced from platforms like YouTube, Face-
book, and Twitter, the dataset covers a broad spectrum of
events—ranging from politics and sports to natural disas-
ters and wars. Each entry consists of the video, its title, and
description, along with both original and near-duplicate
versions of the content.

• Fakeddit [11]: This image-text fake news dataset com-
prises over 1 million samples across various categories
sourced from Reddit. In our study, we randomly selected
35,888 image-text pairs to construct a memory bank.

(2) Hate detection datasets:
• MHClipEN [20]: This dataset is designed specifically

for detecting hateful videos on YouTube. Each entry in
this dataset includes the video, its title, transcript, and
detailed annotations. The annotations offer comprehensive

Parameter FakeTT FVC MHClipEN HateMM

Batch Size 128 128 128 128
Learning Rate 5e-4 1e-3 3e-4 2e-4
Weight Decay 5e-4 5e-4 5e-5 5e-5
Positive Pairs K+ 15 20 20 20
Negative Pairs K→ 20 10 20 15
Loss Coefficient ω 1.0 10.0 1.0 10.0
Loss Coefficient ε 0.1 1.0 0.1 1.0
Loss Coefficient ϑ 10.0 1.0 10.0 1.0

Table D.2. Hyper-parameters settings of CRAVE for each dataset.

information, such as the video’s classification (hateful,
offensive, or non-hateful). For our study, we categorize
both hateful and offensive content as malicious, and thus,
perform a binary classification.

• HateMM [3]: This dataset is a hateful video detection
dataset, collected from BitChute, an alternative video-
sharing platform with minimal content moderation. The
English-language videos were manually annotated by
trained annotators. Each entry contains the full video,
and a hate/non-hate label.

• FHM [7]: This is an image-text hate meme detection
dataset, comprising nearly 10,000 image-text pairs, col-
lected by Facebook. It is designed as a multimodal chal-
lenge aimed at detecting hate speech in memes and is
structured so that only multimodal models can successfully
perform detection. We utilize its training and validation
sets to conduct retrieval.

D.3. Implementation Details
In this section, we provide detailed implementation specifica-
tions for our proposed CRAVE along with a comprehensive
overview of the experimental setup.
• Data processing. In the process of video visual modality

extraction, we employ FFmpeg [19] to uniformly sam-
ple key frames for each video. To extract on-screen text,
we employ Paddle-OCR [10] to conduct optical character
recognition to each key frame. To extract transcript, we
first employ FFmpeg to extract audio track for each video,
and then employ pre-trained Whisper automatic speech
recognition model, specifically whisper-large-v3 to
convert audio track into transcript.

• Pseudo-Pair Generation In the process of obtaining L

representative frames, we first uniformly sample L̃ frames
from each video and encode them using the CLIP vision
encoder. The resulting frame-level features are clustered
using the K-means algorithm to partition them into L

clusters. For each cluster, we select the frame closest to the
cluster centroid in the feature space as the representative
frame, resulting in a set of L frames, denoted as {Ĩl}Ll=1.

• Training configuration. In the process of encoding modal-
ity using CLIP model, for text input, we extend the max-



Module Dataset FVC HateMM
Variant ACC M-F1 ACC M-F1

PP
Retriever

Vanilla Retriever 94.85 94.72 84.79 84.07
Random Retriever 94.10 93.95 83.87 82.53

CD
Decoupler

w/o Decoupling 94.70 94.57 85.71 84.77
w/o Contrastive 93.94 93.76 83.41 82.51
w/o Augmenter 90.92 90.60 80.64 79.99

CRAVE All 96.52 96.45 87.09 86.51

Table E.1. Additional ablation study of key components of CRAVE.

imum sequence length to 256 for all video and image-
text datasets. For vision input, we resize all the frames
and images into 224 ↔ 224. The number of retrieved
image-text positive pairs K+ and negative pairs K→ are
selected from the set {5, 10, 15, 20, 25}, respectively. And
the loss coefficient ω, ε, and ϑ are selected from the set
{10→2

, 10→1
, 100, 101, 102}. We also provide detailed hy-

perparameter settings for each dataset in Table D.2. During
training and evaluation, we set the random seed to 2025.
For statistical testing, where each model is run five times,
we use random seeds ranging from 2025 to 2029 and re-
port the mean value as experimental results. For baseline
models, we strictly adhere to the settings specified in their
original papers.

• Implementation of Domain-Invariant Learning. In this
study, we aim to transfer off-the-shelf knowledge from
the image-text domain to the video domain. Building
upon this, we define the alignment direction in Domain-
Invariant Learning using KL divergence as Image-Text
→ Video. We additionally explore the inverse alignment
direction (Video → Image-Text) and observe that the
resulting performance exhibits only minor fluctuations,
indicating the robustness of our framework.

• Implementation environment. All experiments are con-
ducted on a system equipped with an Intel Core i9-
14900KF processor, an NVIDIA GeForce RTX 4090 GPU
with 24 GB of VRAM, and 128 GB of system RAM.

E. Additional Experiments
E.1. Additional Ablation Study
We present additional ablation study results for the FVC and
HateMM datasets in Table E.1. These results align with the
analysis in Section 4.4 of the main paper, demonstrating that
the PP Retriever and CCD Augmenter components within
CRAVE are crucial for addressing data-scarce malicious
video detection.

E.2. Hyper-parameter Sensitivity Analysis
We empirically analyze the key hyper-parameters in CRAVE:
(1) the number of retrieved positive pairs K+ and negative
pairs K

→. (2) the loss coefficients ω and ε for LDIO and
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Figure E.1. Sensitivity analysis of the number of retrieved image-
text positive pairs K+ and negative pairs K→ on all four datasets.
The accuracy is employed as evaluation metrics.
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Figure E.2. Sensitivity analysis of the coefficient DIO and DUO
loss ω and ε on all four datasets (ω and ε are in log10 scale, denoted
as lg).

LDUO. (3) the loss coefficient ϑ for LCL.

E.2.1. Impact of Parameters K+ and K
→

As shown in Figure E.1, increasing K
+ and K

→ initially
improves performance on both datasets by incorporating
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Figure E.3. Sensitivity analysis of the coefficient Contrastive Learn-
ing loss ϑ on all four datasets (ϑ are in log10 scale, denoted as lg).

richer contextual knowledge through additional retrieved
pairs. However, when K

+ or K
→ becomes excessively

large, irrelevant items are retrieved, introducing noise and
diminishing the relevance of the retrieved features. Conse-
quently, the optimal {K+

,K
→} values are determined to

be {30, 20}, {20, 10}, {25, 10}, and {25, 20} for FakeTT,
FVC, MHClipEN, and HateMM, respectively.

E.2.2. Impact of Parameters ω and ε

As illustrated in Figure E.2, the optimal detection perfor-
mance is achieved when ω is set to be ten times greater
than ε, indicating that the weight assigned to the Domain-
Invariant Objective (DIO) is significantly larger than that
for the Domain-Unique Objective (DUO). We hypothesize
that this imbalance in contribution stems from the differing
levels of difficulty between the two objectives, with DIO
being considerably more challenging than DUO. As a result,
we adopt ω = 1.0 and ε = 0.1 for the FakeTT and MH-
ClipEN datasets and ω = 10.0 and ε = 1.0 for the FVC and
HateMM datasets.

E.2.3. Impact of Parameter ϑ

From Figure E.3, we observe that initially increasing ϑ,
i.e., the weight for the cross-domain contrastive learning
objective, improves detection performance, highlighting the
importance of this objective in enhancing detection accuracy
(i.e., providing more discriminative shared representations).
However, an excessively large ϑ leads to a decline in per-
formance, as other objectives are also critical and require
an appropriate level of relative contribution. Finally, we
choose ϑ = 10.0 for the FakeTT and MHClipEN datasets
and ϑ = 1.0 for the FVC and HateMM datasets.

Video Domain Shared
Image-text Domain Shared

Video Domain Unique
Image-text Domain Unique

(a) FVC Dataset. (b) HateMM Dataset.

Figure E.4. Visualization of the shared and unique feature of
video and image-text domain in CRAVE on the FVC and HateMM
datasets.

Shared Malicious Feature Shared Benign Feature

(a) w/o LCL on FVC Dataset. (b) w/ LCL on FVC Dataset.

(c) w/o LCL on MHClipEN Dataset. (d) w/ LCL on MHClipEN Dataset.

(e) w/o LCL on HateMM Dataset. (f) w/ LCL on HateMM Dataset.

Figure E.5. Visualization of the shared features from malicious and
benign video samples w/o and w/ cross domain contrastive learning
on the FVC, MHClipEN, and HateMM datasets.

E.3. Additional Visualization of Knowledge Trans-
fer

In this section, we visualize the knowledge transfer on other
datasets, FVC and HateMM datasets, including both cross-
domain invariant-learning and contrastive learning.

E.3.1. Additional Cross-Domain Decoupling Learning
Visualization

We present t-SNE visualizations of the shared and unique fea-
tures of the two domains on the FVC and HateMM datasets.
As shown in Figure E.4, our cross-domain invariant learning
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Figure E.6. Generalizability study of our CRAVE with the most
competitive baseline MHCL through cross-dataset experiments.
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Figure E.7. Comparison of CRAVE with the most competitive
baseline MHCL under 5%, 10%, and 20% training set.

mechanism achieves an excellent decoupling effect, which
is consistent with the findings in the main paper.

E.3.2. Additional Cross-Domain Contrastive Learning
Visualization

We provide t-SNE visualizations of the domain-shared video
representations before and after augmented by cross-domain
contrastive learning in the FVC, MHClipEN, and HateMM
datasets. As illustrated in Figure E.5, the cross-domain
contrastive learning effectively transfers knowledge from
image-text domain to malicious video detection, yielding
more discriminative shared video representations.

E.4. Additional Detection Generalizability Analysis
We evaluate the generalizability of CRAVE against the most
competitive baseline, MHCL, on two additional datasets,
FVC and HateMM, including both Out-Of-Distribution
(OOD) detection evaluation (cross-platform detection) and
data-scarcity analysis. Following the experimental settings
described in the main paper (cf. Section 4.7), the results
are shown in Figure E.6 and Figure E.7. From the results,
we observe that CRAVE exhibits strong generalizability in
both OOD and extreme data-scarcity scenarios, highlighting
the critical role of cross-domain knowledge in enhancing
detection generalization.

Dataset FakeTT MHClipEN

Methods ACC M-F1 ACC M-F1

Design A 64.88 39.35 51.49 51.05
Design B 79.59 78.74 77.00 73.99
CRAVE 84.95 83.52 82.50 79.81

Table G.1. Comparison of alternative designs and CRAVE across
two datasets.

E.5. Additional Retrieval Results Presentation
To evaluate the effectiveness of our PP Retriever, we ran-
domly select four videos as queries from the FakeTT and
FVC datasets, two from each, and use Fakeddit dataset as
extra image-text dataset for retrieval, and perform a case
study to analyze the Top-10 image-text pairs retrieved for
these video queries. The results are presented in Figure J.1,
where each retrieved item includes the corresponding image,
text, similarity score, and label. The results demonstrate high
semantic similarity between the retrieved image-text pairs
and the target video queries, underscoring the capability of
our PP Retriever to perform effective cross-domain retrieval
between videos and image-text domains.

F. Discussion on Domain-Invariant Objec- tive
(DIO) selection

G. Discussion on Alternative Design on Cross-
domain Augmentation

In the following, we analyze several alternative designs for
cross-domain augmentation (i.e., utilizing image-text data
to improve detection performance on video data) to validate
the sophistication of the proposed CRAVE. The results are
presented in Table G.1.

Design A: Pre-train the model on image-text data and test
it on video per-frame. The results show that the model pre-
trained on image-text data exhibits almost no capability in
detecting malicious content within video data, indicating the
difficulty of directly transferring the learned representations
from image-text data to improve detection performance on
video data.

Design B: Pre-train the model on image-text data and
fine-tune it on video. This design extends Design A by in-
troducing an additional fine-tuning stage on video data. The
results demonstrate that such fine-tuning significantly im-
proves detection performance compared to Design A. How-
ever, when compared to directly training on the video dataset
(see the w/o Augmenter variant in Section 4.4), the improve-
ment remains limited. This suggests that achieving further
cross-domain improvements necessitates a more effective
and sophisticated augmentation strategy.

The poor performance of these two designs clearly



highlights the sophistication and effectiveness of the
cross-domain retrieval augmentation strategy employed in
CRAVE.

H. Discussion on Domain Gap
The domain gap in CRAVE refers to the multi-faceted dis-
parities between static image-text pairs and dynamic video
sequences that impede effective knowledge transfer for ma-
licious content detection. While both domains share se-
mantic malicious patterns and multimodal compositions,
three fundamental gaps create barriers to direct knowledge
transfer: (1) Temporal-structural gap in modality con-
stitution: Videos inherently capture temporal dynamics as
sequential frames, accompanied by continuously emerging
textual and auditory information, whereas image-text pairs
represent isolated static instances, leading to different con-
tent organization and context propagation mechanisms. (2)
Distributional gap in semantics: The semantics distribu-
tions of malicious patterns vary between domains due to
different data collection methodologies, annotation strate-
gies, and content creation processes in image-text versus
video datasets. These gaps collectively prevent naive trans-
fer learning approaches from succeeding, as evidenced in
Appendix G.

CRAVE addresses these gaps through pseudo-pair gen-
eration that bridges temporal-structural differences, cross-
domain decoupling and contrastive learning that harmonizes
distributional discrepancies, enabling effective cross-domain
knowledge transfer while preserving domain-specific char-
acteristics essential for robust malicious video detection.

I. Broader Impacts of Our Work
In this study, we effectively address the challenge of data-
scarcity in various video-based malicious content detec-
tion (i.e., both hateful content and rumor detection) by in-
troducing a novel cross-domain augmentation framework
(CRAVE). Beyond solving the issue of limited training
data, CRAVE demonstrates remarkable adaptability under
extreme data-scarcity scenarios and robust performance in
OOD detection tasks via accessing and utilizing abundant
and expressive cross-domain data. These findings under-
score the generalizability and resilience of the framework,
paving the way for its application across diverse online video-
sharing platforms without frequently re-training processes.
The broader impacts of CRAVE extend beyond video-based
malicious content detection. By leveraging cross-domain
knowledge to enrich representations, CRAVE establishes a
general solution for video-based downstream tasks where
training data is scarce. Furthermore, the demonstrated robust-
ness in OOD scenarios highlights its potential in applications
requiring model reliability under distribution shifts, fostering
trustworthy AI solutions in video-based tasks.

J. Limitations and Future Work
Although our work, CRAVE, demonstrates strong perfor-
mance and generalizability on malicious video detection
under data-scarcity, there are still multiple ways to further
improve this work:
• Generally, malicious patterns naturally evolve over time,

which is a common challenge for most data-driven tasks,
including malicious video detection. However, one of the
strengths of this work lies in introducing a generalizable
framework that leverages new image-text datasets to aug-
ment video detection capabilities. This framework is de-
signed to remain effective with newly emerging malicious
image-text datasets. For future improvements, we could
explore the development of automated pipelines to crawl
and curate such datasets, further enhancing the detection
of evolving malicious video patterns.

• In the retrieval phase of CRAVE, we employ direct co-
sine similarity for pairwise similarity computation during
retrieval. While this method has proven effective and effi-
cient on the datasets used in our experiments, its scalability
may pose challenges in real-world applications involving
significantly larger image-text datasets. To address this,
future work could explore advanced retrieval techniques,
such as approximate nearest neighbor search or hashing-
based methods, which are better suited for large-scale
scenarios. These methods can enhance retrieval efficiency
while maintaining high accuracy in large datasets.



Figure J.1. Retrieval results from the FakeTT and FVC datasets. The top 10 image-text pairs are retrieved from Fakeddit dataset. “Sim.”
represents the cosine similarity between each retrieved image-text pair and the corresponding query video.
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Similarity Search with GPUs. IEEE Transactions on Big
Data, 7(3):535–547, 2021. 1

[6] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
Leung, Rahul Sukthankar, and Li Fei-Fei. Large-Scale Video
Classification with Convolutional Neural Networks. In Com-
puter Vision and Pattern Recognition (CVPR), pages 1725–
1732, 2014. 3

[7] Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj
Goswami, Amanpreet Singh, Pratik Ringshia, and Davide
Testuggine. The Hateful Memes Challenge: Detecting Hate
Speech in Multimodal Memes. In Conference on Neural
Information Processing Systems (NeurIPS), 2020. 4

[8] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-
and-Language Transformer Without Convolution or Region
Supervision. In International Conference on Machine Learn-
ing (ICML), pages 5583–5594, 2021. 3

[9] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li,
Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei Liu, and Chun-
yuan Li. Llava-OneVision: Easy Visual Task Transfer. arXiv,
abs/2408.03326, 2024. 3

[10] Chenxia Li, Weiwei Liu, Ruoyu Guo, Xiaoting Yin, Kaitao
Jiang, Yongkun Du, Yuning Du, Lingfeng Zhu, Baohua Lai,
Xiaoguang Hu, Dianhai Yu, and Yanjun Ma. Pp-OCRv3:
More Attempts for the Improvement of Ultra Lightweight
OCR System. arXiv, abs/2206.03001, 2022. 4

[11] Kai Nakamura, Sharon Levy, and W. Wang. r/Fakeddit: A
New Multimodal Benchmark Dataset for Fine-grained Fake
News Detection. arXiv, abs/1911.03854, 2019. 4

[12] Olga Papadopoulou, Markos Zampoglou, Symeon Pa-
padopoulos, and Ioannis Kompatsiaris. A corpus of debunked
and verified user-generated videos. Online Information Re-
view, 43(1):72–88, 2019. 4

[13] Yujiang Pu, Xiaoyu Wu, Lulu Yang, and Shengjin Wang.
Learning prompt-enhanced context features for weakly-
supervised video anomaly detection. IEEE Transactions on
Image Processing, 2024. 1

[14] Peng Qi, Yuyan Bu, Juan Cao, Wei Ji, Ruihao Shui, Jun-
bin Xiao, Danding Wang, and Tat-Seng Chua. Fakesv: A
Multimodal Benchmark with Rich Social Context for Fake
News Detection on Short Video Platforms. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), pages
14444–14452, 2023. 3

[15] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning Transferable Visual
Models From Natural Language Supervision. In International
Conference on Machine Learning (ICML), pages 8748–8763,
2021. 1

[16] Karen Simonyan and Andrew Zisserman. Two-Stream Convo-
lutional Networks for Action Recognition in Videos. In Con-
ference on Neural Information Processing Systems (NeurIPS),
pages 568–576, 2014. 3

[17] Waqas Sultani, Chen Chen, and Mubarak Shah. Real-world
anomaly detection in surveillance videos. In Proceedings of
the IEEE conference on computer vision and pattern recogni-
tion, pages 6479–6488, 2018. 1

[18] Yu Tian, Guansong Pang, Yuanhong Chen, Rajvinder Singh,
Johan W Verjans, and Gustavo Carneiro. Weakly-supervised
video anomaly detection with robust temporal feature magni-
tude learning. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4975–4986, 2021. 1

[19] TomarSuramya. Converting video formats with FFmpeg.
Linux Journal, 2006:10, 2006. 4

[20] Han Wang, Rui Yang Tan, Usman Naseem, and Roy Ka-Wei
Lee. Multihateclip: A Multilingual Benchmark Dataset for
Hateful Video Detection on YouTube and Bilibili. In Pro-
ceedings of the ACM International Conference on Multimedia
(MM), 2024. 3, 4

[21] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao
Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng
Ren, Rui Men, Dayiheng Liu, Chang Zhou, Jingren Zhou,
and Junyang Lin. Qwen2-VL: Enhancing Vision-Language
Model&apos;s Perception of the World at Any Resolution.
arXiv, abs/2409.12191, 2024. 3

[22] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma,
Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny
Zhou. Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models. In Conference on Neural Informa-
tion Processing Systems (NeurIPS), 2022. 3

[23] Peng Wu, Xuerong Zhou, Guansong Pang, Lingru Zhou,
Qingsen Yan, Peng Wang, and Yanning Zhang. Vadclip:
Adapting vision-language models for weakly supervised
video anomaly detection. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pages 6074–6082, 2024.
1

[24] Jia-Xing Zhong, Nannan Li, Weijie Kong, Shan Liu,
Thomas H Li, and Ge Li. Graph convolutional label noise
cleaner: Train a plug-and-play action classifier for anomaly
detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1237–1246,
2019. 1


	Introduction
	Related Work
	Methodology
	Overview
	Pseudo-Pair Retriever
	Pseudo-Pair Generation
	Cross-Domain Retrieval

	Contrastive Cross-Domain Augmenter
	Feature Extraction
	Cross-Domain Decoupling Learning
	Cross-Domain Contrastive Learning

	Prediction

	Experiments
	Experimental Setup
	Preliminary Experiment
	Overall Performance
	Ablation Study
	Effect of the PP Retriever
	Effect of the CCD Augmenter

	Cross-Domain Retrieval Quality Presentation
	Visualization on Knowledge Transfer
	Cross-Domain Decoupling Learning Visualization
	Cross-Domain Contrastive Learning Visualization

	Detection Generalizability Analysis
	Out-of-Distribution Detection Evaluation
	Extreme Data-Scarcity Analysis


	Additional Related Work: Data Scarcity in Video-based Detection
	Complexity & Efficiency
	Computational Complexity Analysis
	Complexity of PP Retriever
	Complexity of CCD Augmenter
	Overall Complexity

	Efficiency Comparison

	Proof of the Effectiveness of CRAVE through an Information-Theoretic Perspective
	Detailed Experimental Setup
	Baselines
	Datasets
	Implementation Details

	Additional Experiments
	Additional Ablation Study
	Hyper-parameter Sensitivity Analysis
	Impact of Parameters K+ and K-
	Impact of Parameters  and 
	Impact of Parameter 

	Additional Visualization of Knowledge Transfer
	Additional Cross-Domain Decoupling Learning Visualization
	Additional Cross-Domain Contrastive Learning Visualization

	Additional Detection Generalizability Analysis
	Additional Retrieval Results Presentation

	Discussion on Domain-Invariant Objec- tive (DIO) selection
	Discussion on Alternative Design on Cross-domain Augmentation
	Discussion on Domain Gap
	Broader Impacts of Our Work
	Limitations and Future Work

