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A. Disrupting Deterministic Inversion with Differentiable Trajectory: DIA-MT
We aimed to attack the inversion process by maximizing the process trajectory (PT), which is derived from the difference
between the initial point x0 and the final point xT . However, it is also valid to target only the model’s predicted trajectory
(MT). This MT is derived as shown in Equation 7, and can be understood as exclusively capturing the contribution of the
model’s predictions to the inversion process. We propose an attack on this MT, called DIA-MT, which maximizes the residual
image signal, defined as (xT − decayed x0), away from an isotropic Gaussian. DIA-MT is formulated as follows:

δDIA-MT = argmax
||δ||≤ϵ

∥x̂T (x0 + δ)−
√
ᾱT (E(x0 + δ))∥22 (1)

Same as DIA-PT, x0+ δ is detached from the computational graph used to calculate the gradient. Additionally, as an ablation
study for DIA-MT, we compared its background preservation and prompt-image consistency with those of DIA-PT in Table 4.
Here, the ”Natural Edit” represents the natural outcome of an image editing process without any disruption, and it is used as
a reference point in our experiments.

Inversion DDIM Inversion Null-Text Inversion Negative-Prompt Inversion Direct Inversion
Edit DDIM MasaCtrl PnP P2P P2P Proximal-Guidance P2P Proximal-Guidance P2P

Natural Edit 25.7100 24.9504 26.1414 25.9123 25.5750 24.8495 25.4566 25.2090 25.8333

DIA-PT 23.4614 18.3076 20.7749 26.0381 23.1999 20.0266 17.4938 17.3992 26.0563
DIA-MT 23.7177 21.8592 23.4419 25.7381 24.4444 22.6471 21.4318 21.2247 25.4861

Table 3. CLIP similarity between the edited image and the prompt: Under a combination of different image inputs (clean or disrupted) and
an inversion-editing method pairing, we show the CLIP similarity for images in the PIE-Bench dataset. Lower CLIP similarity indicates
better immunization.

Metrics Structure Background Preservation
Method Distance ↑ PSNR ↓ LPIPS ↑ MSE ↑ SSIM ↓

Natural Edit 0.0249 24.3767 0.0914 0.0071 0.8124

DIA-PT 0.1059 18.2202 0.3410 0.0237 0.5653
DIA-MT 0.0514 22.0443 0.2447 0.0107 0.6856

Table 4. Average background and structure preservation metric for 9 editing techniques. This metric assesses how well the unedited regions
are preserved.

According to Table 3 and Table 4, DIA-MT showed that attacking model trajectories are indeed effective, supporting our
main argument that trajectories should be taken into account during attacks. However, it is observed that the performance
of DIA-MT, which excludes the scaling of x0 during the inversion process, is slightly weaker compared to DIA-PT, which
includes it. This suggests that considering the scaling of x0 leads to a more effective attack.



B. More experimental results
B.1. Step Generalizability
The number of steps used in DDIM varies according to the user’s preference and budget. However, in DIA-PT and DIA-R, we
execute the attack with trajectories sampled with 10 DDIM steps during the inversion and reconstruction process. Therefore,
it is important to verify that our method works in editing environments using different timestep spacings. In Table 5, we
compared the performance by setting DDIM steps to 20, 50, 200, and 1000 in an editing environment DDIM-to-DDIM for
140 randomly selected images from PIE-Bench [11].

Inference Step Method CLIP↓ Distance ↑ PSNR ↓ LPIPS ↑ MSE ↑ SSIM ↓

20

Natural Edit 25.1773 0.02102 25.6405 0.07350 0.00460 0.83539
Photoguard 22.2119 0.08438 20.0121 0.26683 0.01327 0.65680

Glaze 24.5483 0.04575 21.8093 0.20853 0.01063 0.67463
AdvDM 23.1290 0.08768 20.4630 0.27519 0.01470 0.60280

SDS 22.9042 0.06344 21.0721 0.26125 0.01203 0.62612
DIA-PT (ours) 20.2686 0.13860 17.1762 0.38523 0.02803 0.51990
DIA-R (ours) 21.2578 0.11058 17.5010 0.28155 0.04004 0.61981

50

Natural Edit 25.5855 0.02488 24.7736 0.08818 0.00566 0.82333
Photoguard 23.7524 0.08060 19.4990 0.24705 0.01432 0.68406

Glaze 25.3976 0.04158 22.1291 0.18450 0.00979 0.71290
AdvDM 24.4719 0.07046 21.0579 0.23121 0.01242 0.66378

SDS 24.0583 0.06431 21.1631 0.22512 0.01174 0.66120
DIA-PT (ours) 23.0969 0.10368 19.0090 0.31325 0.02019 0.59189
DIA-R (ours) 22.9501 0.08432 19.2288 0.22481 0.02689 0.68966

1000

Natural Edit 25.7686 0.02837 23.9500 0.10169 0.00668 0.81311
Photoguard 24.4224 0.07838 19.5179 0.24314 0.01427 0.70117

Glaze 25.8500 0.03955 21.9824 0.16913 0.00955 0.73640
AdvDM 25.2232 0.06341 21.2205 0.20878 0.01198 0.69459

SDS 24.6955 0.06262 21.2171 0.20686 0.01153 0.69147
DIA-PT (ours) 24.2379 0.07757 20.1859 0.25300 0.01587 0.65586
DIA-R (ours) 24.2615 0.06724 19.8701 0.19693 0.01990 0.72183

Table 5. Attack Performance Across Different Editing Steps. This table shows the performance of various attack methods using 20, 50,
and 1000 DDIM steps for inversion and reconstruction on 140 images from the PIE-Bench dataset. Key metrics include CLIP Similarity
(CLIP), Distance, PSNR, LPIPS, MSE, and SSIM.

A notable observation from these results is that the attack performance decreases as the number of steps increases, which
is evident across all metrics. Our experiments include assessments with 1000 steps, the maximum step size typically used in
the diffusion process, where we observe the poorest attack performance. However, it is crucial to note that the performance
remains consistently lower than that of natural edits performed without any attack. This demonstrates the efficacy of our
method across all step sizes and supports the stability of our approach.



B.2. Comparing Performance Through Noise Purification
In this section, we compare the robustness of different methods against cleaning approaches known as ‘purification’ for adver-
sarial noise. We provide performance measurements after applying JPEG Compression, Crop & Resize, and AdverseCleaner
to 700 immunized images across all methods. Details for each purification method are as follows:
• JPEG Compression: The simplest and fastest image compression algorithm for purifying adversarial noise. Compression

quality can be selected between 0 and 100, where lower values cause more image degradation. We provide results with
quality values of 70, 80, and 90.

• Crop & Resize: A naturally occurring and effective purification technique. We cropped 10% of each image and then resized
it to match the model’s input requirements.

• Adverse Cleaner [33]: An algorithmic approach capable of purifying high-frequency noise patterns.
• Gaussian Noising: The purification method that adds random Gaussian noise on immunized images. We provide results

with σ=0.1.
• Noisy Upscaling [9]: A two-stage purification method proposed by Shan et al. [23], which applies Gaussian Noising (σ=0.1)

followed by Stable Diffusion Upscaler [20].
As shown in Table 6, all baselines demonstrate robustness to purification when compared to Natural Edit. Notably, our

method maintains superior performance while remaining robust to most purification methods. In some experiments, SDS
shows sub-optimal performance, which appears to be due to its low-frequency pattern and higher degradation scale.



Purification Method Attack Method CLIP↓ Distance ↑ PSNR ↓ LPIPS ↑ MSE ↑ SSIM ↓
- Natural Edit 25.7100 0.02613 23.8400 0.09933 0.00639 0.80723

JPEG Compression (90)

Photoguard 25.6936 0.05174 21.4936 0.22142 0.00962 0.70957
Glaze 25.8862 0.03472 22.4310 0.15541 0.00829 0.74462

AdvDM 24.5583 0.07191 21.0165 0.21653 0.01233 0.67113
SDS 24.1685 0.06742 20.8744 0.21799 0.01181 0.67212

DIA-PT (Ours) 24.2789 0.07655 20.0105 0.27472 0.01610 0.63854
DIA-R (Ours) 23.7255 0.08374 19.2542 0.21633 0.02637 0.67706

JPEG Compression (80)

Photoguard 26.0247 0.04463 22.0655 0.18531 0.00880 0.73312
Glaze 26.0196 0.03095 23.0004 0.13806 0.00741 0.76862

AdvDM 24.4738 0.07044 21.1526 0.21349 0.01209 0.67737
SDS 24.1725 0.06773 21.0680 0.21292 0.01159 0.67927

DIA-PT (Ours) 24.8818 0.05645 20.9928 0.23660 0.01259 0.68420
DIA-R (Ours) 24.2000 0.07318 19.9076 0.20011 0.02179 0.69623

JPEG Compression (70)

Photoguard 26.0953 0.04212 22.3060 0.16901 0.00836 0.74815
Glaze 26.0306 0.03010 23.1220 0.13043 0.00712 0.77931

AdvDM 24.7252 0.06771 21.3877 0.20781 0.01172 0.68590
SDS 24.2350 0.06743 21.1680 0.21060 0.01171 0.68238

DIA-PT (Ours) 25.5055 0.04608 21.6928 0.20653 0.01036 0.71623
DIA-R (Ours) 25.0112 0.06244 20.6276 0.18408 0.01673 0.71640

Crop & Resize

Photoguard 25.7733 0.08424 17.3266 0.25859 0.02362 0.61375
Glaze 25.8354 0.06285 17.3832 0.23109 0.02411 0.61677

AdvDM 25.1026 0.07810 17.1060 0.27175 0.02563 0.57034
SDS 24.5399 0.07795 16.9971 0.26720 0.02630 0.57432

DIA-PT (Ours) 24.8340 0.07498 16.9972 0.29035 0.02618 0.57572
DIA-R (Ours) 24.8310 0.08518 16.5469 0.25361 0.03056 0.59598

Adverse Cleaner

Photoguard 25.3614 0.06022 21.7390 0.19018 0.00939 0.75646
Glaze 25.7053 0.03406 22.8134 0.14303 0.00768 0.78250

AdvDM 24.6748 0.04763 22.4885 0.16196 0.00926 0.75834
SDS 24.1779 0.05513 22.1588 0.16882 0.01001 0.74709

DIA-PT (Ours) 25.3572 0.03936 21.9392 0.18543 0.00971 0.75839
DIA-R (Ours) 24.6166 0.06166 20.6104 0.18917 0.01714 0.73489

Gaussian Noising

Photoguard 26.1351 0.0426 21.5181 0.2908 0.0094 0.5805
Glaze 26.1265 0.0364 22.1301 0.2591 0.0084 0.6048

AdvDM 25.5851 0.0528 21.5729 0.2772 0.0104 0.5920
SDS 25.3543 0.0515 21.7844 0.2720 0.0101 0.6031

DIA-PT (Ours) 26.2993 0.0423 21.4033 0.2809 0.0099 0.5788
DIA-R (Ours) 25.9461 0.0449 21.1744 0.2750 0.0115 0.5918

Noisy Upscaling

Photoguard 25.4812 0.0381 23.0208 0.1561 0.0076 0.7654
Glaze 25.4772 0.0351 22.9662 0.1506 0.0077 0.7658

AdvDM 25.5246 0.0344 22.8962 0.1582 0.0076 0.7553
SDS 25.5639 0.0355 22.8581 0.1609 0.0079 0.7516

DIA-PT (Ours) 25.5119 0.0374 22.8195 0.1568 0.0078 0.7615
DIA-R (Ours) 25.6470 0.0351 22.8716 0.1511 0.0079 0.7662

Table 6. Immunization performance across purification methods. This table demonstrates the robustness of various immunization methods
against JPEG Compression, Crop & Resize, and Adverse Cleaner attacks, evaluated on 700 images from the PIE-Bench dataset.



B.3. Considerations for Selecting Hyperparameters
We provide an analysis of the hyperparameters of DIA-PT and DIA-R: attack iteration and trajectory length. Attack iteration
is the number of PGD updates needed for optimization, while trajectory length is the length of the differentiable trajectory
used in DDIM inversion and sampling during a single update.

Through Table 7, we noted that both DIA-PT and DIA-R converge in disruption performance with just 20 attack iterations,
which is likely because we precisely target the chained trajectory. Additionally, Table 8 reveals a difference between DIA-
PT and DIA-R, with their best values found at trajectory lengths of 10 and 20, respectively. This indicates that for DIA-
PT, trajectories beyond a certain length may have a negative impact since its loss is calculated based on the latent code z0.
Instead, DIA-R’s performance improves with more detailed trajectories as it computes loss through x0. To ensure a consistent
inversion trajectory environment across all our experiments, we set the trajectory length to 10.

Method Attack Iteration CLIP↓ Distance ↑ PSNR ↓ LPIPS ↑ MSE ↑ SSIM ↓

DIA-PT

5 25.6048 0.0482 21.5865 0.2094 0.0103 0.6992
10 24.3525 0.0751 20.0086 0.2693 0.0155 0.6366
15 23.7979 0.0913 19.2879 0.2949 0.0188 0.6078
20 23.4575 0.1006 18.7744 0.3124 0.0208 0.5874

DIA-R

5 24.6790 0.0547 20.8372 0.1791 0.0133 0.7274
10 24.3205 0.0670 19.9336 0.2038 0.0186 0.6967
15 23.8511 0.0796 19.3068 0.2190 0.0239 0.6818
20 23.4670 0.0882 18.7633 0.2307 0.0288 0.6666

Table 7. Attack Performance Across Different Attack Iterations. This table shows the performance of DIA-PT and DIA-R attacks using 5,
10, 15, and 20 attack iterations on the PIE-Bench dataset. The bold values represent the best performance across different attack iterations
for each method.

Method Trajectory Length CLIP↓ Distance ↑ PSNR ↓ LPIPS ↑ MSE ↑ SSIM ↓

DIA-PT
5 25.6181 0.0506 21.1142 0.2163 0.0107 0.6967

10 23.4575 0.1006 18.7744 0.3124 0.0208 0.5874
20 24.1361 0.0782 20.0423 0.2835 0.0154 0.6209

DIA-R
5 24.3258 0.0676 19.7006 0.2118 0.0179 0.6899

10 23.4670 0.0882 18.7633 0.2307 0.0288 0.6666
20 22.0941 0.1101 17.5972 0.2540 0.0432 0.6451

Table 8. Attack Performance Across Different Trajectory Steps. This table shows the performance of DIA-R and DIA-PT attacks using 5,
10, and 20 trajectory steps on the PIE-Bench dataset. The bold values represent the best performance across different trajectory lengths for
each method.



C. Transferability to Black-Box Models
The Diffusion model is constantly updated and has an active developer community, resulting in many variants. As a result,
the model used for attacks and the model used for editing the disrupted images may differ, potentially leading to attack
performance degradation. This concept is referred to as model transferability, which indicates how well the disrupting per-
formance is maintained across different scenarios. We conducted an experiment to test whether images disrupted using the
initial stable diffusion model, version 1.4 (SD v1.4), retain their resistance when edited with black-box models, specifically
stable diffusion versions 2.0 (SD v2.0) and 2.1 (SD v2.1). The experiment utilized a simple editing method DDIM-to-DDIM,
and the hyperparameters used for editing were identical to those employed with SD v1.4, with the experiment conducted on
the PIE-Bench.

Diffusion Ver. Method CLIP↓ Distance ↑ PSNR ↓ LPIPS ↑ MSE ↑ SSIM ↓

SD v1.4
Natural Edit 25.7100 0.02613 23.8400 0.09933 0.00639 0.80723

DIA-PT (Ours) 23.4613 0.10042 18.7803 0.31218 0.02074 0.58770
DIA-R (Ours) 23.4626 0.08821 18.7655 0.23087 0.02877 0.66656

SD v2.0
Natural Edit 25.7983 0.04129 23.2952 0.12510 0.00708 0.79470

DIA-PT (Ours) 25.1747 0.05941 21.0996 0.22989 0.01152 0.70174
DIA-R (Ours) 24.1616 0.07028 20.1148 0.20655 0.01826 0.71447

SD v2.1
Natural Edit 24.5758 0.05082 21.7974 0.16001 0.01027 0.76361

DIA-PT (Ours) 23.4423 0.08422 19.2938 0.26466 0.01734 0.65941
DIA-R (Ours) 22.5146 0.08270 19.1470 0.23906 0.02164 0.68034

Table 9. Disrupting Performance Comparison Across Stable Diffusion Model Versions. The table illustrates the robustness of images
disrupted using the early version of Stable Diffusion (SD v1.4) when attempting editing attempts using different versions of the model
(SD v2.0 and SD v2.1). The provided metrics (CLIP, Distance, PSNR, LPIPS, MSE, SSIM) evaluate various aspects of the edited images,
showing that the immunized retain some immunity despite the difference in model versions. The arrow next to each metric name indicates
the direction of better performance.

In Table 9, we observe that images immunized with the early version of Stable Diffusion (SD v1.4) retain a substantial
disruptive signal when edited with different versions of Stable Diffusion. These results are crucial, as SD v2.1 and SD v2.0,
along with the earlier SD v1.4, serve as the foundational models for most community-driven developments.

Interestingly, our experiments consistently show that the attack is less disruptive when using different versions of Stable
Diffusion (SD v2.0 and SD v2.1), but it remains a consistent disruption. Additionally, the qualitative result in Fig. 1 en-
ables visual understanding. Overall, the results support the generalizability of our approach, demonstrating that even with
advancements in model versions, the disrupted images continue to exhibit strong resistance to editing attempts.
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Figure 1. Quality comparison across Stable Diffusion Model Version. In this figure, DIA-PT and DIA-R visualize the results of editing
images immunized in SD v1.4 across SD v1.4, SD v2.0, and SD v2.1. Editing in different versions reduces the disruptive performance, but
still shows considerable effectiveness.



D. Observation on Over-Editing Scenarios
We extensively report over-edited images observed in DDIM-to-P2P and Direct-to-P2P. In Fig. 2, DDIM-to-P2P produces
text-familiar images through P2P’s aggressive attention map handling, which causes the failure to preserve the integrity of the
original image during editing. In Fig. 3, Direct-to-P2P shows a similar performance to Natural Edit as it corrects the target
diffusion trajectory.
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Figure 2. Quality comparison of images generated by DDIM-to-P2P across different immunization methods. The words in green indicate
the parts to be edited from the original image. We visualize the failure to preserve the integrity of the original image.
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Figure 3. Quality comparison of images generated by Direct-to-P2P across different immunization methods. The words in green indicate
the parts to be edited from the original image. We visualize that Direct-to-P2P robustly edits against immunization methods.



E. Limitation
Our proposed DIA-PT takes approximately 40 seconds, while DIA-R takes around 1 minute and 50 seconds. Although the
required VRAM of 6-7GB is not overly demanding, there is room for improvement. Additionally, our method focuses on
current image inversion methods and prominent image generation models. Should future image inversion methods evolve
with operations orthogonal to the current DDIM inversion process, or the image modeling paradigm is subjected to changes,
our method may undergo performance decay. We believe that analyzing our approach to address these limitations will help
guide future research on the problem of image editing immunity through disruption.
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