
General Compression Framework for Efficient Transformer Object Tracking
Supplementary Materials

Lingyi Hong1 Jinglun Li2 Xinyu Zhou1 Shilin Yan1 Pinxue Guo2 Kaixun Jiang2 Zhaoyu Chen2

Shuyong Gao1 Runze Li3 Xingdong Sheng3 Wei Zhang1* Hong Lu1* Wenqiang Zhang1,2**

1 Shanghai Key Lab of Intelligent Information Processing,
College of Computer Science and Artificial Intelligence, Fudan University

2 College of Intelligent Robotics and Advanced Manufacturing, Fudan University
3 Lenovo Research

honglyhly@gmail.com, wqzhang@fudan.edu.cn

1. Appendix

This appendix is structured as follows:
• In Appendix 1.1, we provide more experiments to verify

the strong generalization ability of our CompressTracker.
• In Appendix 1.2, we provide more ablation study results.
• In Appendix 1.3, we show the pseudo code of our Com-

pressTracker.

CompressTracker-2 CompressTracker-3 CompressTracker-4 CompressTracker-6 CompressTracker-85

10

15

20

25

30

Tr
ai

ni
ng

 T
im

e
(h

)

6
7

8

12

1414

16

20

25

29
Naive Training
CompressTracker

Figure 1. Training Time.

1.1. Heterogeneous Structure Robustness

Compressing MixFormerV2. To affirm the generaliza-
tion ability of our approach, we conduct experiments on
MixFormerV2 [1] and SMAT [2]. MixFormerV2-S is
a fully transformer tracking model consisting of 4 trans-
former layers, trained via a complex multi-stages model
reduction paradigm. Following MixFormerV2-S, we adopt
MixFormerV2-B as teacher and compress it to a student
model with 4 layers. The results are shown in Table 1. Our
CompressTracker-M-S share the same structure and channel

*Corresponding Author

dimension of MLP layers with MixFormerV2-S and outper-
forms MixFormerV2-S by about 1.4% AUC on LaSOT.

It’s worth noting that although CompressTracker-2
and CompressTracker-M-S have similar inference speeds,
MixFormerV2-S and CompressTracker-M-S each con-
tain four transformer layers, whereas CompressTracker-
2 only has two. The lower number of transformer
layers contributes to the slightly lower performance for
CompressTracker-2. Additionally, both CompressTracker-
4 and CompressTracker-M-S have four transformer layers,
but CompressTracker-M-S has a lower hidden feature dim
of MLP layer than CompressTracker-4. As highlighted in
MixFormerV2-S [1], a reduced feature dimension can lead to
decreased accuracy. Consequently, CompressTracker-M-S
exhibits slightly lower performance than CompressTracker-4.
Moreover, our CompressTracker-4 requires only about 20
hours for training, in contrast to the 120 hours needed for
MixFormerV2-S, which also relies on a complex multi-stage
training strategy. Besides, the reduction paradigm in Mix-
FormerV2 limits the student model’s structure, while our
framework supports a diverse range of transformer architec-
tures thanks to our stage division.

Compressing OSTrack to SMAT. SMAT replace the
vanilla attention in transformer layer with separated at-
tention. We compress OSTrack into a student model
CompressTracker-SMAT, aligning the number and structure
of transformer layer with SAMT. We maintain the decoder
of OSTrack for CompressTracker-SMAT. CompressTracker-
SMAT surpasses SMAT by 1.1% AUC on LaSOT, which
demonstrates that our framework is flexible and not limited
by the structure of transformer layer.

Based on results in Table 1 and 2 in main paper and
Table 1 and 2, our CompressTracker achieves an optimal
trade-off between efficiency and performance and is applica-
ble to any teacher model, any resolution, any stage number,

1

Method LaSOT LaSOText TNL2K TrackingNet UAV123 FPSAUC PNorm P AUC P AUC P AUC PNorm P AUC P

MixFormerV2-B [1] 70.6 80.8 76.2 50.6 56.9 57.4 58.4 83.4 88.1 81.6 69.9 92.1 165
MixFormerV2-S [1] 60.6 69.9 60.4 43.6 46.2 48.3 43.0 75.8 81.1 70.4 65.8 86.8 325
CompressTracker-M-S 62.0 88% 70.9 63.2 44.5 88% 47.1 50.2 87% 47.8 77.7 93% 82.5 73.0 66.9 96% 87.1 325 1.97×

Table 1. Compress MixFormerV2. We compress MixFormerV2 into CompressTracker-M-S with 4 layers, which is the same as
MixFormerV2-S including the dimension of MLP layer. We report the performance on 5 benchmarks and calculate the performance gap in
comparison to the origin MixFormerV2-B. Our CompressTracker-M-S outperforms MixFormerV2-S under the same setting.

Method LaSOT LaSOText TNL2K TrackingNet UAV123 FPSAUC PNorm P AUC P AUC P AUC PNorm P AUC P

OSTrack-256 [3] 69.1 78.7 75.2 47.4 53.3 54.3 - 83.1 87.8 82.0 68.3 - 105
SMAT [2] 61.7 71.1 64.6 - - - - 78.6 84.2 75.6 64.3 83.9 158
CompressTracker-SMAT 62.8 91% 72.2 64.0 43.4 92% 46.0 49.6 91% 46.9 79.7 96% 85.0 75.4 65.9 96% 86.4 138 1.31×

Table 2. Compress OSTrack for SMAT. We compress OSTrack into CompressTracker-SAMT with 4 SMAT layers, which is the same
as SMAT. We report the performance on 5 benchmarks and calculate the performance gap in comparison to the original OSTrack. Our
CompressTracker-SAMT outperforms SMAT under the same setting.

any teacher model size, and any student architectures, which
highlights the superiority and strong generalization ability
of our CompressTracker.

1.2. More Ablation Study
We represent more ablation studies on LaSOT to explore the
factors contributing to effectiveness of our CompressTracker.
Unless otherwise specified, teacher model is OSTrack,and
student model has 4 encoder layers. The student model is
trained for 300 epochs, and the pinit is set as 0.5.

Training Time. We compare the training time of Com-
pressTracker with 500 training epochs across different layers
in Figure 1. ’Naive Training’ denotes solely training on
groundtruth data with 300 epochs, and ’CompressTracker’
represents our proposed training strategy with 500 epochs.
The training time is recorded on 8 NVIDIA RTX 3090 GPUs.
Although our CompressTracker requires a longer training
time compared to the ’Naive Training’, the increased com-
putational overhead remains within acceptable limits.

1.3. Replacement Training
We present the pseudocode for the training and testing phases
of CompressTracker in Algorithm 2 and Algorithm 3, respec-
tively. Additionally, the pseudocode of OSTrack [3] is also
shown in Algorithm 1. During training process, we employ
Bernoulli sampling to implement a replacement training
strategy, while in the test phase, we integrate the student
layers and discard the teacher layer.

Algorithm 1 Pseudocode of OSTrack in a PyTorch-like style

z/x: RGB image of template/search
region

patch_embed: patch embedding layer,
pos_embed_z/pos_embed_z: position

embedding for template/search region
blocks: transformer block layers
decoder: decoder network

def forward(x, z):
patch embedding layer
x, z = patch_embed(x), patch_embed(z

)

add position embedding
x, z = x + pos_embed_x, z +

pos_embed_z

concat
x = torch.cat([z, x], dim=1)

transformer layers
for i, blk in enumerate(blocks):

x = blk(x)

decode the matching result
x = decoder(x)

Algorithm 2 Pseudocode of CompressTracker for Training
in a PyTorch-like style

z/x: RGB image of template/search
region

patch_embed: patch embedding layer,
pos_embed_z/pos_embed_z: position

embedding for template/search region
bernoulli_sample: bernoulli sampling

function with probability of p
n_s/n_t: layer number of student/

teacher model
teacher_blocks: transformer block

layers of a pretrained teacher
student_blocks: transformer block

layers of student model
decoder: decoder network

def forward(x, z):
patch embedding layer
x, z = patch_embed(x), patch_embed(z

)

add position embedding
x, z = x + pos_embed_x, z +

pos_embed_z

concat
x = torch.cat([z, x], dim=1)

replacement sampling
inference_blocks = []
for i in range(n):

if bernoulli_sample() == 1:
inference_blocks.append(

student_blocks[i])
else:

for j in range(n_t//n_s):
inference_blocks.append(

teacher_blocks[i*(n_t//
n_s) + j])

randomly replaced transformer
layers

for i, blk in enumerate(
inference_blocks):
x = blk(x)

decode the matching result
x = decoder(x)

Algorithm 3 Pseudocode of CompressTracker for Testing in
a PyTorch-like style

z/x: RGB image of template/search
region

patch_embed: patch embedding layer,
pos_embed_z/pos_embed_z: position

embedding for template/search region
student_blocks: transformer block

layers of student model
decoder: decoder network

def forward(x, z):
patch embedding layer
x, z = patch_embed(x), patch_embed(z

)

add position embedding
x, z = x + pos_embed_x, z +

pos_embed_z

concat
x = torch.cat([z, x], dim=1)

transformer layers
for i, blk in enumerate(

student_blocks):
x = blk(x)

decode the matching result
x = decoder(x)

References
[1] Yutao Cui, Tianhui Song, Gangshan Wu, and Limin Wang.

Mixformerv2: Efficient fully transformer tracking. Advances
in Neural Information Processing Systems, 36, 2024. 1, 2

[2] Goutam Yelluru Gopal and Maria A Amer. Separable self
and mixed attention transformers for efficient object tracking.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pages 6708–6717, 2024. 1,
2

[3] Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and
Xilin Chen. Joint feature learning and relation modeling for
tracking: A one-stream framework. In European conference
on computer vision, pages 341–357. Springer, 2022. 2

	Appendix
	Heterogeneous Structure Robustness
	More Ablation Study
	Replacement Training

