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Supplementary Material

1. Physically Based Rendering (PBR) Model
We use the Cook-Torrance Bidirectional Reflectance Dis-
tribution Function (BRDF) [3] based on microfacet theory
to define the materials and establish the rendering model.
Following [1], for a point with coordinates p 2 R3, albedo
a 2 R3, metallic m 2 R, roughness r 2 R, and surface ori-
entation n 2 R3, the PBR result L observed from viewpoint
c 2 R3 is given by:

L(p,!) = a(1�m)
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where ! represents the direction of the outgoing light from
point p to c, i.e., the viewing direction. Li denotes the inci-
dent light from the direction !i, and ⌦ = {!i : !i · n � 0}
represents the hemisphere of normals. D, F , and G are the
distribution, Fresnel, and geometry functions, respectively.
For the integral part, the time complexity of Monte Carlo
methods is unacceptable. Given that we use ambient light-
ing as the light source, we compute it efficiently using the
split-sum method [9].

2. Additional Details
Implementation Details. We report some implementation
details as follows: 1) In the UV refinement one-step model,
the input channels are expanded to 8, with the weights of
the additional 4 channels initialized to 0. 2) In the abla-
tion experiment, the structure of SuperMat under the “w/o
e2e” setting is slightly different. Without single-step infer-
ence, we can only train the diffusion model in a denoising
task manner, meaning that during the single-step denoising
process, the latents that the UNet receives are not encoded
from a clean rendered image, but rather a noisy albedo and
noisy RM. Therefore, on top of SuperMat, we additionally
replicate the conv in and the first DownBlock as indepen-
dent parts of structural expert branches to map the inputs
from two different domains to similar distributions. These
are then fused in an averaged manner before being fed into
the shared modules. 3) In the re-render loss implementa-
tion, each time we perform relighting, we randomly select a
lighting condition from a set of 50 environment maps, cov-
ering nearly all possible lighting scenarios.
Training Details. Both the SuperMat and the UV refine-
ment model are fine-tuned from Stable Diffusion 2.1, while
SuperMatMV is built upon SuperMat. We train SuperMat
using the AdamW optimizer with a learning rate of 2e � 5

on 8 NVIDIA A800 (80GB) GPUs, with a batch size of 32,
for a total of 30 epochs. The UV refinement one-step model
is trained with the AdamW optimizer at a learning rate of
2e�5, also on 8 NVIDIA A800 (80GB) GPUs, with a batch
size of 16, for 40 epochs. The images are resized to reso-
lutions of 512 ⇥ 512 and 1024 ⇥ 1024, used for SuperMat
and the UV refinement one-step model, respectively. The
training setup for SuperMatMV mirrors that of SuperMat,
except that SuperMatMV is trained for only 3 epochs using
a batch size of 8 for 6-view images.
Image Space Decomposition Baselines. We compare Su-
perMat and SuperMatMV with 7 other image space decom-
position networks. Inverse Indoor Rendering (IIR) [13],
Intrinsic Image Diffusion (IID) [6], and RGB!X [12] are
scene-level material estimation methods. Derender3D [11]
and IntrinsicAnything [2] are adaptable to diverse data but
do not generate all material types. StableMaterial [8] and
its multi-view version, StableMaterialMV, provide image
space material denoising diffusion priors to MaterialFusion
and, like SuperMat, focus on decomposing object materials.
It is worth noting that, for scene-targeted methods, to ensure
a fairer comparison, we re-train a deterministic method, IIR,
and a diffusion-based method, RGB! X, on our dataset.

3. Additional Visualizations
In Figures 2, 3, 4, 5, 6, 7, we present additional results of Su-
perMat on the Objaverse [4], BlenderVault [8] and DTC [5]
test datasets, covering both artist-designed and real-world
scanned objects. Fig. 8 illustrates more decomposition re-
sults on 3D objects.

4. Additional Experiments
Novel View Synthesis Relighting. We validate our mate-
rial decomposition pipeline for 3D objects by relighting the
decomposed objects under novel lighting and viewpoints
and comparing the results with ground-truth relit object im-
ages. We select all 14 objects from the StanfordORB dataset
[7] and 14 randomly chosen unseen objects from the Blend-
Vault dataset [8], applying appropriate lighting conditions
before performing material decomposition. We adapt base-
line methods to incorporate the same UV backprojection
and blending framework as our approach, allowing them
to handle 3D object decomposition. We then render the
decomposed models from 60 novel viewpoints under three
different environment maps. The quantitative comparison
results are presented in Tab. 4, while qualitative results are
shown in Fig. 1. Our method significantly outperforms
others in both texture completeness and the physical con-



Albedo Metallic Roughness Relighting
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

L1 26.8102 0.9164 0.0956 22.4801 0.8889 0.1803 23.5855 0.9109 0.1194 26.8610 0.9374 0.0672
SSI 24.2359 0.9063 0.1033 22.2521 0.8701 0.1814 23.7918 0.9139 0.1165 24.7511 0.9266 0.0732
Perceptual 27.0082 0.9151 0.0949 22.8702 0.8669 0.1760 24.1452 0.9145 0.1156 27.2484 0.9374 0.0650

Table 1. Quantitative comparison across different loss functions. We highlight the best results for each metric.

Training Data Type Albedo Metallic Roughness
MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓

Synthetic 0.0027 27.41 0.9195 0.0885 0.0120 23.80 0.8767 0.1692 0.0084 24.32 0.9152 0.1118
Real-captured 0.0061 24.50 0.8982 0.1049 0.0350 19.40 0.8464 0.2043 0.0113 22.32 0.9075 0.1165
Synthetic+Real-captured 0.0025 27.58 0.9205 0.0867 0.0111 23.77 0.8787 0.1696 0.0074 24.63 0.9154 0.1115

Table 2. Ablation results on training data types in the image space decomposition task. We highlight the best results for each metric.

Albedo RM
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Input 13.56 0.5499 0.4227 12.52 0.5484 0.5245
Refined 23.92 0.7537 0.2792 27.31 0.8460 0.1178

Table 3. Quantitative evaluation on UV maps before and after re-
finement.

BlenderVault StanfordORB
PSNR↑ SSIM↑ LPIPS↓PSNR↑ SSIM↑ LPIPS↓

Derender3D 22.52 0.9151 0.1023 17.03 0.8241 0.2012
IIR 21.10 0.9005 0.1046 15.83 0.7944 0.2005
IID 22.10 0.9095 0.0989 16.21 0.8000 0.2059
RGB→X 22.23 0.9115 0.0987 17.23 0.8272 0.1849
IA 23.33 0.9115 0.1047 17.98 0.8286 0.1875
SM 23.36 0.9176 0.0909 16.94 0.8174 0.1801
SMMV 23.57 0.9175 0.0887 17.10 0.8189 0.1785
Ours 27.00 0.9463 0.0629 24.99 0.9281 0.0962

Table 4. Quantitative comparison of novel view synthesis relight-
ing. We highlight the best , second-best , and third-best results
for each metric. Here “IA”, “SM”, “SMMV” represents “Intrinsi-
cAnything”, “StableMaterial”, “StableMaterialMV” respectively.

sistency of materials, demonstrating its effectiveness in de-
composing high-quality materials for 3D objects.
Comparison between Different Loss Functions. Without
re-render loss, we experiment with three types of loss func-
tions in the end-to-end framework: L1 loss, shift and scale
invariant (SSI) loss [10], and perceptual loss. The perfor-
mance of models trained with these loss designs is evaluated
on the same test dataset in Objaverse [4], and the results are
shown in Tab. 1. Among these losses, the perceptual loss,
which is ultimately adopted by SuperMat, demonstrates the
best performance.
Quantitative Validation of UV Refinement. Tab. 3

presents the quantitative evaluation results of the UV maps
generated and blended by SuperMatMV before and after re-
finement, validating the effectiveness of the UV refinement
one-step model.

Ablation on the Training Dataset. For the image space
decomposition task, we conduct an ablation study on the
composition of the training dataset, testing the SuperMat’s
performance when trained solely on synthetic data or only
on real-captured data. We randomly select 64 objects con-
taining both data types from the training set, totaling 6144
inputs, which are unseen during training but used to evalu-
ate the model’s estimations of 3 material types with MSE,
PSNR, SSIM, and LPIPS metrics. The results of the experi-
ment are shown in Tab.5, indicating that data diversity helps
improve the model’s generalization ability.

Detailed Quantitative Comparison. We show the detailed
quantitative comparison of the image space decomposition
task in Tables 5, 6, 7 and 8.

5. Limitations

Although our method enables fast and physically consistent
material decomposition for both images and 3D objects, it
still has several limitations. First, converting the diffusion
model into a deterministic model significantly improves
performance but also sacrifices the benefits of the diffu-
sion process. For instance, in cases with high-frequency de-
tails, SuperMat’s results may lack sharpness. Additionally,
as a deterministic model, SuperMat has reduced flexibil-
ity—once an estimation error occurs, rerunning the process
will always yield the same incorrect result. Furthermore,
due to the constraints of the chosen BRDF model, SuperMat
faces challenges in handling transparent materials, multi-
layered surfaces, and highly reflective objects.
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Figure 1. Qualitative comparison of novel view synthesis relighting.
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Figure 2. Additional albedo comparison from the Objaverse test dataset.
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Figure 3. Additional albedo comparison from the BlenderVault test dataset.
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Figure 4. Additional albedo comparison from the DTC test dataset.
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Figure 5. Additional metallic and roughness comparison from the Objaverse test dataset. The metallic maps are shown on the left side (M),
while the roughness maps are shown on the right side (R).
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Figure 6. Additional metallic and roughness comparison from the BlenderVault test dataset. The metallic maps are shown on the left side
(M), while the roughness maps are shown on the right side (R).
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Figure 7. Additional metallic and roughness comparison from the DTC test dataset. The metallic maps are shown on the left side (M),
while the roughness maps are shown on the right side (R).
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Figure 8. Additional results of decomposition for 3D objects.



Objaverse BlenderVault DTC
MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓

Derender3D 0.0087 22.16 0.8532 0.1816 0.0104 22.45 0.8919 0.1489 0.0246 18.30 0.8366 0.2157
IIR 0.0100 22.99 0.8741 0.1396 0.0150 22.32 0.8709 0.1616 0.0165 20.50 0.8677 0.1644
IID 0.0088 23.15 0.8847 0.1276 0.0122 22.39 0.8845 0.1395 0.0101 22.15 0.9031 0.1175
RGB!X 0.0073 23.56 0.8905 0.1017 0.0141 21.73 0.8757 0.1332 0.0129 21.60 0.8917 0.1114
IntrinsicAnything 0.0125 21.36 0.8701 0.1550 0.0219 20.24 0.8700 0.1682 0.0122 21.23 0.8963 0.1328
StableMaterial 0.0110 23.78 0.8989 0.1064 0.0143 23.90 0.9061 0.1079 0.0129 22.64 0.9008 0.1086
StableMaterialMV 0.0074 24.41 0.8974 0.0970 0.0089 25.13 0.9071 0.1014 0.0067 24.15 0.9229 0.0855
SuperMat w/o e2e 0.0057 25.11 0.8973 0.1027 0.0102 24.30 0.8935 0.1219 0.0107 23.36 0.8985 0.1038
SuperMat w/o re-render 0.0029 27.01 0.9151 0.0949 0.0047 26.12 0.9152 0.1045 0.0031 26.96 0.9405 0.0725
SuperMat 0.0024 27.66 0.9209 0.0865 0.0044 26.63 0.9171 0.0997 0.0018 28.74 0.9490 0.0597
SuperMatMV 0.0022 28.04 0.9241 0.0832 0.0039 26.75 0.9183 0.1026 0.0023 27.89 0.9443 0.0658

Table 5. Quantitative comparison on albedo. We highlight the best , second-best , and third-best results for each metric.

Objaverse BlenderVault DTC
MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓

IIR 0.0462 16.87 0.8399 0.2230 0.0472 17.11 0.7688 0.2900 0.0324 19.86 0.6771 0.3604
IID 0.0354 17.31 0.8307 0.2108 0.0431 17.43 0.7742 0.2866 0.0347 17.41 0.6797 0.3895
RGB!X 0.0350 16.81 0.8296 0.2090 0.0549 15.36 0.7634 0.3374 0.0682 13.90 0.6738 0.4617
StableMaterial 0.0493 16.83 0.8398 0.2164 0.0515 20.79 0.8156 0.2379 0.0567 23.26 0.7938 0.2833
StableMaterialMV 0.0452 16.96 0.8411 0.2114 0.0511 18.74 0.8150 0.2590 0.0777 16.15 0.7096 0.3783
SuperMat w/o e2e 0.0373 19.40 0.8672 0.2021 0.0470 20.91 0.8455 0.2764 0.0496 22.05 0.8204 0.3694
SuperMat w/o re-render 0.0135 22.87 0.8669 0.1760 0.0311 22.52 0.8040 0.2343 0.0087 28.23 0.8067 0.2687
SuperMat 0.0109 23.78 0.8785 0.1695 0.0344 23.02 0.8335 0.2328 0.0068 29.65 0.8936 0.2641
SuperMatMV 0.0069 25.38 0.8919 0.1619 0.0324 23.17 0.8437 0.2311 0.0059 29.78 0.8892 0.2656

Table 6. Quantitative comparison on metallic. We highlight the best , second-best , and third-best results for each metric.

Objaverse BlenderVault DTC
MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓

IIR 0.0257 20.67 0.8902 0.1242 0.0438 18.58 0.8503 0.1754 0.0320 19.93 0.8512 0.1793
IID 0.0204 21.32 0.8863 0.1266 0.0295 19.97 0.8718 0.1586 0.0168 21.51 0.8695 0.1576
RGB!X 0.0159 20.93 0.8705 0.1177 0.0257 19.78 0.8486 0.1780 0.0179 20.48 0.8229 0.1817
StableMaterial 0.0131 21.97 0.9065 0.1064 0.0251 20.94 0.8962 0.1312 0.0256 20.13 0.8612 0.1604
StableMaterialMV 0.0142 21.26 0.8949 0.1081 0.0253 20.49 0.8915 0.1284 0.0233 20.83 0.8651 0.1493
SuperMat w/o e2e 0.0170 21.36 0.8832 0.1221 0.0278 20.48 0.8679 0.1633 0.0246 20.60 0.8352 0.1907
SuperMat w/o re-render 0.0081 24.15 0.9145 0.1156 0.0211 21.73 0.8942 0.1429 0.0086 24.69 0.8961 0.1502
SuperMat 0.0074 24.59 0.9154 0.1114 0.0201 22.39 0.8972 0.1386 0.0053 25.78 0.9046 0.1342
SuperMatMV 0.0074 24.96 0.9165 0.1070 0.0145 23.22 0.8998 0.1297 0.0049 26.34 0.9064 0.1257

Table 7. Quantitative comparison on roughness. We highlight the best , second-best , and third-best results for each metric.

Objaverse BlenderVault DTC
MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓

IIR 0.0132 23.19 0.8991 0.1060 0.0290 20.96 0.8765 0.1441 0.0245 18.80 0.8897 0.0890
IID 0.0105 23.83 0.9057 0.0971 0.0160 22.31 0.9009 0.1142 0.0149 21.21 0.9066 0.1137
RGB!X 0.0107 22.86 0.8974 0.0864 0.0177 21.43 0.8828 0.1205 0.0207 20.23 0.8780 0.1327
StableMaterial 0.0107 24.08 0.9108 0.0851 0.0203 22.22 0.9022 0.1013 0.0183 21.38 0.8999 0.1074
StableMaterialMV 0.0091 24.02 0.9114 0.0816 0.0154 22.69 0.9019 0.1018 0.0134 22.70 0.9137 0.0966
SuperMat w/o e2e 0.0079 25.81 0.9192 0.0776 0.0171 23.15 0.9031 0.1059 0.0158 22.75 0.9032 0.1057
SuperMat w/o re-render 0.0042 27.25 0.9374 0.0650 0.0109 24.94 0.9270 0.0855 0.0050 27.05 0.9490 0.0600
SuperMat 0.0041 28.01 0.9406 0.0566 0.0101 25.50 0.9300 0.0811 0.0031 29.47 0.9590 0.0460
SuperMatMV 0.0032 28.51 0.9437 0.0566 0.0118 25.41 0.9289 0.0815 0.0041 29.01 0.9567 0.0502

Table 8. Quantitative comparison on relighting. We highlight the best , second-best , and third-best results for each metric.
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