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S1. IISA Task: Additional Details
S1.1. Sensitivity of the IIS

In this section, we compare the relative sensitivity of the
quality ratings and the IIS. Here, by sensitivity we refer to
the precision of an annotation tool in detecting variations in
image quality. The classical measurement tool in IQA is the
rating scale, such as the 100-point “continuous” scale or the
discrete 5-point Absolute Category Ratings (ACR). In IISA
we employ a 100-point scale corresponding to the rescaling
values to measure the IIS. Here, we normalize both quality
ratings and scale values to the interval [0, 1].

To conduct our analysis, we consider the KonX dataset
[11]. We aim to study the connection between the change
in quality relative to the change in scale. Recall that KonX
provides quality scores, in the form of a Mean Opinion
Score (MOS), for the same images annotated at three reso-
lutions: 512 x 384, 1024 x 768, and 2048 x 1536. We com-
pute the quality differences between pairs of corresponding
rescaled images across the three resolutions and plot them
against the MOS of the higher-resolution image in each pair,
as shown in Fig. S1.

We restrict our analysis to image scale pairs where the
MOS at the higher resolution is below 0.85. For these, the
average quality increases with downscaling. The ratio of
the resolutions in a pair gives the downscaling factor, which
in turn gives the variation in scale, referred to as AS. Thus,
halving the resolution means AS = 0.5 and on average cor-
responds to a quality increase (referred to as AQ) of 0.038,
while downscaling to S = 0.25 means AS = 0.75 and
leads to AQ = 0.076. To measure the sensitivity, we em-
ploy the concept of leverage y, defined as the ratio between
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Figure S1. Quality differences between pairs of rescaled images
belonging to the KonX dataset against the MOS of the higher-
resolution image in each pair. The MOS for an image at a specific
resolution is denoted as Q(image-width). We plot trend lines for
each resolution pair.

the change in image scale and the change in image quality,
ie., v = |AS|/|AQ)|. Hence, v > 1 indicates that a large
change in the scale results in a smaller change in quality,
and vice-versa for v < 1. In our case, the leverage vy is
6.6 and 19.7 for the two scale changes of AS = 0.5 and
AS = 0.75, respectively.

In Sec. 4.2, we discuss the precision of subjective mea-
surements, indicated by the confidence intervals of the ag-
gregated annotations. The precision levels for IISA and NR-
IQA are comparable. However, the leverage factor v > 1
implies that minor changes in quality result in larger varia-
tions in scale. Therefore, achieving a specific precision in
measuring scale equates to an even finer precision in mea-
suring quality. Thus, v acts as a leverage or magnifying fac-
tor. This indicates that the sensitivity of our annotation tool
for IIS is higher when detecting subtle differences in quality
compared to traditional quality rating scales, making IISA
suitable for fine-grained quality assessment.
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Figure S2. Relationship between image quality and intrinsic width
(logarithmic scale) for the KonlQ-10k subset of IISA-DB.

S1.2. IIS and Quality Scores

We investigate the relationship between the IIS and quality
scores, represented by MOS, by analyzing the overlapping
images between the KonlQ-10k [6] and IISA-DB datasets.
KonlQ-10k comprises quality annotations for images down-
scaled to a fixed resolution of 1024 x 768 pixels. In con-
trast, the KonlQ-10k subset of IISA-DB contains the orig-
inal high-resolution version of the same images, with the
same content and aspect ratio but variable resolutions above
2048 x 1536 pixels.

By the definition of IIS, high-quality — and thus pre-
sumably undegraded — images should have an IIS of 1, as
downscaling them can not reduce the visible degradation
but merely results in a potential loss of details. Therefore,
KonlQ-10k images with near-perfect quality (i.e., with the
highest MOS) are expected to correspond to an IIS of 1 at a
resolution of 1024 x 768 pixels. From another perspective,
the original high-resolution versions of the images with the
highest MOS should have an intrinsic width (i.e., the width
of the image downscaled to its IIS) of at least 1024 pixels.
Indeed, such images could reach a near-perfect quality even
when downscaled to a width larger than 1024 pixels. To
validate this hypothesis, we plot the intrinsic widths of the
images against their MOS in Fig. S2. The results show that
the images with the highest quality correspond to intrinsic
widths higher than 1024 in almost all cases, thus confirming
our hypothesis.

In addition, we plot the IIS of the images against their
MOS in Fig. S3. We observe a non-linear relationship be-
tween the IIS and quality MOS (Fig. S3, left). On the con-
trary, the logarithm of the IIS exhibits an approximately lin-
ear relationship with the quality scores (Fig. S3, right). This
result emphasizes the different nature of the scales of the
MOS and the IIS. Indeed, the quality ratings use a percep-
tually linear scale [2], while rescaling factors — underlying
the IIS — are intrinsically non-linear.

S1.3. Discussion on Assumption

In Sec. 6.3 we discuss our assumption that the relationship
between image quality and scale follows either a concave-
down or monotonic function. Specifically, prior works re-
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Figure S3. Relationship between image quality and intrinsic scale
for the KonlQ-10k subset of IISA-DB, with IIS represented on a
linear scale (left) and a logarithmic scale (right).

lated to viewing distance [3, 5, 10] align with our assump-
tion. In addition, we empirically test this assumption by
analyzing the quality change with resolution in the KonX
dataset [11]. For each resolution, the estimated quality
MOS have an average confidence interval of approximately
4.6% relative to the rating range, demonstrating good pre-
cision and enabling us to draw the following conclusions.
First, we observe that for 90% of the KonX images (378
out of 420) the MOS across the three resolutions supports
our assumption. Second, for cases where the MOS follows
a concave-up function across resolutions, due to the uncer-
tainty of the MOS there is no single image for which we can
assert with more than 90% probability that our assumption
does not hold. To determine this, we generate MOS values
by resampling the individual quality ratings with replace-
ment 100 times from the original pool of per-participant
ratings. The fraction of samples that do not support our
assumption provides the stated probability. We hypothe-
size that instances where our assumption appears not to hold
may be due to subjective biases from annotators — such as
the presentation order of images during annotation, context
effects like anchoring caused by the distribution of image
quality within the same session, or individual interpreta-
tions of the quality scale — as well as the presence of in-
terpolation artifacts from downscaling, including aliasing,
moiré patterns, or blurs.

S1.4. IISA Applications: Additional Details

We present scenarios across industry and research where
IISA is the perfect tool to optimize quality and resolution
trade-offs.

Printing and publishing Printing an image too large can
accentuate flaws present in the source image while print-
ing too small sacrifices detail. IISA can guide the selec-
tion of print dimensions and resolution (dot-per-inch, DPI).
This ensures consistently high-quality prints. Traditionally,
this task is managed by an expert operator. IISA auto-
mates these decisions, allowing scalable deployment in on-
line printing systems and enabling non-expert users to make
optimal choices independently.

Moreover, web developers and UI designers often need



to serve images across devices with different screen sizes
and resolutions. Typically, responsive design uses fixed
rules, whereas IISA enables content-awareness. For in-
stance, an online image gallery can automatically size each
photo based on its intrinsic scale. This ensures that users
see images at the best quality for their device while saving
bandwidth and load time.

Gaming and graphics rendering Modern games em-
ploy dynamic resolution scaling to maintain high FPS.
However, choosing the amount of rescaling on each axis
can dramatically affect quality. IISA offers a principled so-
lution to this problem. Moreover, if the target FPS is not
fixed, a game engine could automatically downscale ren-
dered frames (slightly degraded by aliasing or motion blur)
until just before quality starts dropping, ensuring players get
the clearest visuals with optimal performance (FPS).

Computational photography Smartphone cameras rely
on computational photography to balance resolution and
noise. Although sensors may reach 100+MP, phones often
merge pixels in low light to produce cleaner lower MP im-
ages — effectively searching for the image’s intrinsic scale.
IISA makes this process explicit and optimal. In tasks like
super-resolution or denoising, algorithms can use IISA to
determine when further resolution or noise reduction stops
improving quality.

Benchmarking IQA methods Traditional IQA metrics
predict quality at a fixed resolution, while IISA requires
accuracy at multiple scales. Our experiments show that
off-the-shelf IQA models — NR-IQA trained on traditional
datasets — perform poorly on the IISA task. By directly eval-
uating alignment with human perception across scales, [ISA
serves as a valuable benchmark. Performance improve-
ments of NR-IQA methods on the IISA-DB benchmark
indicate a deeper understanding of the quality—resolution
trade-off, which is critical for both academic research and
real-world image processing.

Extending IQA study methodology IISA introduces
new methods for subjective image quality evaluation. Tra-
ditional IQA often has viewers rate an image’s quality at a
fixed resolution, which can be difficult for subtle degrada-
tions in no-reference settings. By contrast, [ISA asks view-
ers to resize an image until it “looks best”, inherently com-
paring quality across scales. This approach improves sensi-
tivity to minor artifacts (see Sec. S1.1).

Training dataset curation for image restoration Con-
structing image datasets requires managing images of vary-
ing quality. Traditionally, low-quality images are discarded
to avoid introducing erroneous priors into restoration mod-
els. However, IISA provides a more nuanced approach:
rather than discarding low-quality images, it downscales
them to their intrinsic scale to maximize quality. This pre-
serves content diversity because discarding images purely
on quality can disproportionately exclude dynamic or low-
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light scenes, which tend to be blurrier and noisier. By apply-
ing IISA, we mitigate that bias while maintaining a wider
range of content.

S2. IISA-DB Dataset: Additional Details

S2.1. Image Curation

To ensure the diversity of images in the proposed dataset,
we selected images from two sources: 300 from the KonlQ-
10k dataset [6] — which were themselves sourced from
Flickr — and 600 from Pixabay. The two sets were chosen to
balance the range of intrinsic resolutions (corresponding to
the image rescaled to its IIS) in the database. The KonlQ-
10k subset comprises lower-quality photos with smaller in-
trinsic resolutions, whereas the Pixabay images are typi-
cally of higher quality and intrinsic resolution.

Aiming for higher quality in the Pixabay subset, we se-
lected newer camera models from a list of 71, focusing on
those released after 2010 with full-frame sensors. From a
pool of over one million images on Pixabay with EXIF in-
formation, we filtered for photos with a width greater than
4,000 pixels, resulting in approximately 18,000 images that
met all criteria. We sampled for diversity 600 images, main-
taining uniform distributions among binned normalized fa-
vorites, likes, downloads, and user tags using a method sim-
ilar to [11]. Most of these were captured with Canon EOS
1/5/6D Mark 2/3/4 cameras, using various lenses and cap-
ture settings. For the KonlQ-10k subset, we also sampled
for diversity regarding quality levels and machine tags —
with a confidence greater than 80% — using the same strati-
fied procedure.

The last filtering step we applied was removing images
containing identifiable people. Thus, we retained 248 im-
ages from KonlQ-10k and 537 from Pixabay. All images
have a minimum width of 2048 pixels and are annotated at
their original resolution. Fig. S4 illustrates the distribution
of image widths at their original and intrinsic scales.

S2.2. Annotation Approach: Slider

As explained in Sec. 4, the subjective side of IISA is simi-
lar to the image Just Noticeable Difference (JND) task [9],
which aims to determine the smallest level of distortion
(e.g., compression amount) at which degradation becomes



Figure S5. Screenshot of the UI of the ZOVI web application that
we developed to annotate the IIS of an image.

perceptible. This level is called the JND and is conceptually
analogous to the IIS, which can be interpreted as the low-
est downscale factor that maximizes the perceived quality
of an image. Given the similarity between the two tasks,
we took inspiration from the JND assessment to design the
annotation strategy of the IIS.

The literature on JND assessment has proposed various
annotation methods, including binary search and slider pre-
sentation [9]. Among these, slider presentation has proven
more effective, offering lower costs and higher precision.
Therefore, as explained in Sec. 4, we adopt a similar ap-
proach and develop an annotation tool (ZOVI) — shown in
Fig. S5 —that displays a slider that allows the users to down-
scale the image from its original size (scale = 1). In con-
trast, the binary search method is less efficient as it requires
multiple independent participant judgments. For instance,
if we were to consider 100 possible scale values the binary
search would require [log2100] = 7 comparisons. At a
median of 3 seconds per judgment, it would take around 21
seconds to determine the IIS of an image. Empirical evi-
dence suggests that the slider presentation is faster, taking
15 seconds per image, and provides more precise results for
JND assessment [9].

S2.3. Intrinsic Scale Aggregation Strategy

Following the methodology detailed in Sec. 4, we collect 20
IIS annotations for each image (10 participants x 2 opinions
each). To obtain the ground-truth IIS labels we need a strat-
egy to aggregate the single subjective opinions. We refer
to this aggregated IIS value (i.e., the ground-truth one) as
the Mean Opinion Intrinsic Scale (MOIS), drawing an anal-
ogy to the Mean Opinion Scores (MOS) used for assessing
perceived image quality. One might naively compute the
arithmetic mean of the single IIS opinions, similar to how
MOS are computed. However, the scale of the slider of our
annotation tool is inherently non-linear. For instance, when
an image’s size doubles from 50% to 100%, the scale dif-
ference on the slider is twice that of when the image dou-
bles from 25% to 50%. Therefore, values from different

parts of the slider range should not be equally weighted, as
plain averaging would. To address this, we apply a loga-
rithmic transformation (log,) to the individual IIS values,
which linearizes the scale before averaging. After averag-
ing, we then exponentiate the result to revert to the original
scale. This approach is equivalent to computing the geo-
metric mean of the individual subjective opinions to obtain
the MOIS of each image.

Formally, let ©2;(I) be the j-th subjective opinion asso-
ciated with the image I, with 5 = 1,...,20. Then, we com-
pute the MOIS (I) of the image I by using the geometric
mean:

TIL; loga(2; (1)

QI =2 =%

In this way, we account for the non-linearity of the slider
scale. The final value Q(I) represents the ground-truth IIS
value of the image I, or MOIS. Across the 785 images com-
posing our dataset, the average MOIS is 0.347, with per-
image MOIS ranging from 0.060 to 0.811.

S2.4. Examples of Image-IIS Pairs

IISA-DB is designed to be diverse, featuring images with
varying content and quality levels. Fig. S7 presents exam-
ples of image-IIS pairs from our dataset. Since we cannot
display the images at their original size, we have cropped
relevant sections and shown them at their original scale.
Note that due to rescaling in the PDF viewer, the images
may not appear exactly as they did to participants in the
subjective study, i.e., at a 1:1 ratio of image to native screen
pixels. However, the scale ratio between the original and
intrinsic image crops remains consistent.

S2.5. Examples of Attention Maps

We visualize the attention maps of the TOPIQ model trained
with our WIISA approach in Fig. S6, using the method de-
scribed in the original paper [1]. Fig. S6 (a) shows an image
featuring a small foreground object in focus against a blurry
background, while Fig. S6 (b) depicts a high-semantic ob-
ject surrounded by high-frequency texture. The model at-
tends to in-focus and high-semantic regions, suggesting that
IIS predictions are primarily driven by the degradation of
high-level semantic content.

S3. Additional Experimental Results

S3.1. Implementation Details

During the training of each baseline, we extract square cen-
ter crops with a size of 1536 pixels. We use data augmen-
tation techniques that do not affect image quality, namely
horizontal and vertical flips, with a probability of 0.5. We
use Lanczos interpolation to generate the weakly labeled



Figure S6. Visualization of TOPIQ’s model attention.

Method SRCC PLCC RMSE MAE
TOPIQ (SPAQ) 0042 0088 0323 0.290
TOPIQ (UHD-IQA)  0.054 0.166 0.290 0.255

Table S1. Evaluation of the performance on the IISA-DB dataset
of the zero-shot multi-scale IISA approach based on the TOPIQ
[1] model. (-) indicates the pre-training dataset. Best scores are
highlighted in bold.

image-IIS pairs with our approach. We set the number of
weak labels n,,; to 2 and the downscaling threshold ¢ to
0.65. During testing, we feed each model the image at its
original scale as input. We carry out the experiments on an
NVIDIA H100 80GB GPU.

S3.2. Zero-Shot Multi-scale IISA

Given the formulation of IIS reported in Eq. 1, we can
employ the quality scores predicted by a pre-trained NR-
IQA method to estimate the IIS automatically. Specifically,
given ns uniformly sampled scales s in the range sy, 1], we
can use a pre-trained NR-IQA model to assess the quality
of each downscaled version I° of an input image / and then
find the scale for which the predicted quality is the highest.
This would be an estimate for the IIS of image 1.

Following the evaluation protocol described in Sec. 6.1,
we assess the performance of this zero-shot multi-scale
approach on the proposed IISA-DB dataset. We employ
two versions of the TOPIQ [1] model pre-trained on the
SPAQ [4] and UHD-IQA [7] datasets, which feature high-
resolution images similar to those in IISA-DB. We use
ns = 100 scales and report the results in Tab. S1. We
observe that the zero-shot multi-scale approach achieves
unsatisfactory performance, regardless of the pre-training
dataset. We attribute this to NR-IQA models struggling to
handle the change in perceptual quality caused by down-
scaling, as noted in [8, 11]. In addition, the multi-scale ap-
proach requires multiple model forward passes to obtain a
single IIS prediction, which can be inefficient.

S4. Limitations

The annotation process for IISA is time-consuming, requir-
ing a median of 15 seconds per image versus 3 seconds for
NR-IQA. Moreover, the significant effort and concentration

required often make it challenging for typical crowdsourc-
ing workers. In our pilot experiments, we found a high
disqualification rate (about 90%) among participants from
Amazon Mechanical Turk, highlighting the need for more
qualified but expensive expert annotators — the latter par-
ticipated in our experiments. Despite these challenges, the
superior sensitivity of IISA justifies its use in scenarios re-
quiring highly precise quality judgments.

When collecting subjective IIS annotations, we em-
ployed Lanczos interpolation to rescale the images. While
such an interpolation method guarantees high-quality re-
sults, different algorithms could be considered. For exam-
ple, one could employ faster but lower-quality methods such
as bilinear, or higher-quality, albeit slower, algorithms such
as the full 2D Lanczos one. While the experiments reported
in Sec. 6.3 show that the interpolation algorithm does not
make a significant difference for predictive IISA models, fu-
ture work could extend our study by examining the effects
of different interpolation methods for subjective IISA.

The scope of this study is focused on the impact of low-
level distortions in User-Generated Content (UGC) images.
Consequently, the applicability of our findings to special-
ized domains governed by different perceptual criteria, such
as text-heavy images where readability is the primary qual-
ity indicator, remains largely unexplored. Extending the
proposed framework to these areas is a promising direction
for future work, which would involve adapting protocols to
capture domain-specific quality factors.

S5. Future Work

Our work suggests several promising directions for future
research, including: 1) extending our dataset to incorporate
more types of images, such as super-resolved, synthetically
distorted, and computer-generated images; 2) conducting
additional subjective studies — similar to those of KonX — to
futher validate our assumption related to how image qual-
ity changes with scale; 3) analyzing the impact of different
types of distortion on the IIS.
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